1. 难度:中等 | |
集合A={y∈R|y=2x},B={-1,0,1},则下列结论正确的是( ) A.A∩B={0,1} B.A∪B=(0,+∞) C.(CRA)∪B=(-∞,0) D.(CRA)∩B={-1,0} |
2. 难度:中等 | |
已知实数x、y满足,则x-3y的最大值是( ) A.-1 B.0 C.1 D.2 |
3. 难度:中等 | |
复数()2等于( ) A.4 i B.-4 i C.2 i D.-2 i |
4. 难度:中等 | |
,为非零向量,“函数f(x)=(x+)2为偶函数”是“⊥”的( ) A.充分但不必要条件 B.必要但不充分条件 C.充要条件 D.既不充分也不必要条件 |
5. 难度:中等 | |
已知函数y=sin(ωx+φ)(ω>0,0<φ≤),且此函数的图象如图所示,由点P(ω,φ)的坐标是( ) A.(2,) B.(2,) C.(4,) D.(4,) |
6. 难度:中等 | |
如果执行程序框图,那么输出的t=( ) A.96 B.120 C.144 D.300 |
7. 难度:中等 | |
已知f(x)是R上的偶函数,若f(x)的图象向右平移一个单位后,则得到一个奇函数的图象,则f(1)+f(3)+…+f(9)的值为( ) A.1 B.0 C.-1 D. |
8. 难度:中等 | |
△ABC的外接圆的圆心为O,半径为2,且,则向量在方向上的投影为( ) A. B.3 C. D.-3 |
9. 难度:中等 | |
在区间[0,1]上随机取一个数x,则事件“”发生的概率为( ) A. B. C. D. |
10. 难度:中等 | |
已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得=4a1,则的最小值为( ) A. B. C. D.不存在 |
11. 难度:中等 | |
给出命题: (1)在空间里,垂直于同一平面的两个平面平行; (2)设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α; (3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件; (4)a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一个平行. 其中正确命题个数是( ) A.0 B.1 C.2 D.3 |
12. 难度:中等 | |
已知f(x)是定义在R上的奇函数,且x>0时,f(x)=(x-2)(x-3)+0.02,则关于y=f(x)在R上零点的说法正确的是( ) A.有4个零点其中只有一个零点在(-3,-2)内 B.有4个零点,其中两个零点在(-3,-2)内,两个在(2,3)内 C.有5个零点都不在(0,2)内 D.有5个零点,正零点有一个在(0,2)内,一个在(3,+∞)内 |
13. 难度:中等 | |||||||||||
某工厂经过技术改造后,生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据,
|
14. 难度:中等 | |
双曲线(p>0)的左焦点在抛物线y2=2px的准线上,则双曲线的离心率为 . |
15. 难度:中等 | |
若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为 . |
16. 难度:中等 | |
设f(x)=x3+ax2+bx+1的导函数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R,则曲线y=f(x)在点(1,f(1))处的切线方程为 . |
17. 难度:中等 | |
如图,某人在塔的正东方向上的C处在与塔垂直的水平面内沿南偏西60°的方向以每小时6千米的速度步行了1分钟以后,在点D处望见塔的底端B在东北方向上,已知沿途塔的仰角∠AEB=α,α的最大值为60°. (1)求该人沿南偏西60°的方向走到仰角α最大时,走了几分钟; (2)求塔的高AB. |
18. 难度:中等 | |
某水泥厂甲、乙两个车间包装水泥,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽査数据如下: 甲:102,101,99,98,103,98,99 乙:110,115,90.85,75,115,110 (1)画出这两组数据的茎叶图: (2>求出这两组数据的平均值和方差(用分数表示>:并说明哪个车间的产品较稳定. (3)从甲中任取一个数据X (x≥100),从乙中任取一个数据y (y≤100),求满足条件|x-y|≤20的概率. |
19. 难度:中等 | |
如图,在直角梯形ABEF中,将四边形DCEF沿CD折起,使∠FDA=60°,得到一个空间几何体如图所示. (1)求证:BE∥平面ADF; (2)求证:AF⊥平面ABCD; (3)求三棱锥E-BCD的体积. |
20. 难度:中等 | |
已知椭圆C1:=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且 (I)求椭圆C1的方程; (Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程. |
21. 难度:中等 | |
已知数列{an}的前n项和为Sn,函数f(x)=px3-(p+q)x2+qx+q(其中p、q均为常数,且p>q>0),当x=a1时,函数f(x)取得极小值、点(n,2Sn)(n∈N+)均在函数y=2px2-qx+q-f′(x)的图象上. (1)求a1的值; (2)求数列{an}的通项公式. |
22. 难度:中等 | |
如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F. (1)证明:E是BC的中点; (2)证明:AD•AC=AE•AF. |
23. 难度:中等 | |
已知直线l的参数方程为(t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为 (1)求直线l的倾斜角; (2)若直线l与曲线C交于A,B两点,求|AB|. |
24. 难度:中等 | |
选修4-5:不等式选讲 若关于x的方程 x2-4x+|a|+|a-3|=0有实根 (1)求实数a的取值集合A (2)若存在a∈A,使得不等式t2-2a|t|+12<0成立,求实数t的取值范围. |