1. 难度:中等 | |
已知集合M={x|-3<x≤5},N={x|x<-5或x>5},M∪N等于( ) A.{x|-5<x<5} B.{x|x<-5或x>-3} C.{x|-3<x≤5} D.{x|x<-3或x>5} |
2. 难度:中等 | |
已知两条直线l1:x+y-1=0,l2:3x+ay+2=0且l1⊥l2,则a=( ) A. B. C.-3 D.3 |
3. 难度:中等 | |
设a=0.32,b=20.3,c=log0.34,则( ) A.c<a<b B.c<b<a C.b<a<c D.b<c<a |
4. 难度:中等 | |
若某空间几何体的三视图如图所示,则该几何体的体积是( ) A.12 B.8 C.6 D.4 |
5. 难度:中等 | |
从甲、乙等6名同学中挑选3人参加某公益活动,要求甲、乙至少有1人参加,不同的挑选方法共有( ) A.16种 B.20种 C.24种 D.120种 |
6. 难度:中等 | |
已知α、β是两个不同平面,m、n是两不同直线,下列命题中的假命题是( ) A.若m∥n,m⊥α,则n⊥α B.若m∥α,α∩β=n,则m∥n C.若m⊥α,m⊥β,则α∥β D.若m⊥α,m⊂β,则α⊥β |
7. 难度:中等 | |
某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档产品60件,每提高一个档次将少生产3件产品.则获得利润最大时生产产品的档次是( ) A.第7档次 B.第8档次 C.第9档次 D.第10档次 |
8. 难度:中等 | |
已知定义在R上的函数f(x)满足f(2)=1,f′(x)为f(x)的导函数.已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)>1,则的取值范围是( ) A.( B. C.(-2,1) D.(-∞,-2)∪(1,+∞) |
9. 难度:中等 | |
已知函数 y=sinωxcosωx 的最小正周期是,那么正数ω= . |
10. 难度:中等 | |
已知向量=(1,2),=(k,1),若向量∥,那么k= . |
11. 难度:中等 | |
已知过点的直线l与圆C:x2+y2+4x=0相交的弦长为,则圆C的圆心坐标是 ,直线l的斜率为 . |
12. 难度:中等 | |
某程序框图如图所示,则输出的S= |
13. 难度:中等 | |
已知的展开式中x4的系数是-35,则m= ;a1+a2+a3+…+a7= . |
14. 难度:中等 | |
设函数f(x)的定义域为R,若存在与x无关的正常数M,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为有界泛函.在函数 ①f(x)=-5x, ②f(x)=x2, ③f(x)=sin2x, ④f(x)=, ⑤f(x)=xcosx 中,属于有界泛函的有 (填上所有正确的序号). |
15. 难度:中等 | |
在△ABC中,. (I)求角A的大小; (II)若a=3,sinB=2sinC,求S△ABC. |
16. 难度:中等 | |
某人进行射击训练,击中目标的概率是,且各次射击的结果互不影响. (Ⅰ)假设该人射击5次,求恰有2次击中目标的概率; (Ⅱ)假设该人每射击5发子弹为一组,一旦命中就停止,并进入下一组练习,否则一直打完5发子弹才能进入下一组练习,求: ①在完成连续两组练习后,恰好共使用了4发子弹的概率; ②一组练习中所使用子弹数ξ的分布列,并求ξ的期望. |
17. 难度:中等 | |
如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=1,点M,N分别是PD,PB的中点. (I)求证:PB∥平面ACM; (II)求证:MN⊥平面PAC; (III)若,求平面FMN与平面ABCD所成二面角的余弦值. |
18. 难度:中等 | |
已知数列{an}是等差数列,a3=10,a6=22,数列{bn}的前n项和是Tn,且. (Ⅰ)求数列{an}的通项公式; (Ⅱ)求证:数列{bn}是等比数列; (Ⅲ)记cn=an•bn,求证:cn+1<cn. |
19. 难度:中等 | |
已知函数(a>0). (I)当a=1时,求函数f(x)的单调区间; (II)若不等式对x∈R恒成立,求a的取值范围. |
20. 难度:中等 | |
设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)3. (1)求f(x)的解析式; (2)当x=1时,f(x)取得极值,证明:对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立; (3)若f(x)是[1,+∞)上的单调函数,且当x≥1,f(x)≥1时,有f[f(x)]=x,求证:f(x)=x. |