1. 难度:中等 | |
已知集合A={x|-5≤2x-1≤3,x∈R},B={x|x(x-8)≤0,x∈Z},则A∩B=( ) A.(0,2) B.[0,2] C.{0,2} D.{0,1,2} |
2. 难度:中等 | |
复数(a+i)2对应点在y轴负半轴上,则实数a的值是( ) A.-1 B.1 C.- D. |
3. 难度:中等 | |
如图是2007年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( ) A.84,4.84 B.84,1.6 C.85,1.6 D.85,4 |
4. 难度:中等 | |
已知双曲线的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为( ) A. B. C. D. |
5. 难度:中等 | |
在等比数列{an}中,a1+an=34,a2•an-1=64,且前n项和Sn=62,则项数n等于( ) A.4 B.5 C.6 D.7 |
6. 难度:中等 | |
△ABC的三个内角A、B、C所对边长分别为a,b,c,设向量=(a+b,sinC),=(a+c,sinB-sinA),若∥,则角B的大小为( ) A. B. C. D. |
7. 难度:中等 | |
设平面区域D是由双曲线的两条渐近线和直线6x-y-8=0所围成三角形的边界及内部.当(x,y)∈D时,x2+y2+2x的最大值为( ) A.24 B.25 C.4 D.7 |
8. 难度:中等 | |
已知△ABC中,AB=AC=4,BC=,点P为BC边所在直线上的一个动点,则满足( ) A.最大值为16 B.最小值为4 C.为定值8 D.与P的位置有关 |
9. 难度:中等 | |
如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为( ) A. B. C. D. |
10. 难度:中等 | |
下列四个命题中,正确的是( ) A.对于命题p:∃x∈R,使得x2+x+1<0,则¬p:∀x∈R,均有x2+x+1>0 B.函数f(x)=e-x-ex切线斜率的最大值是2 C.已知函数f(a)=sinxdx则f[f()]=1+cos1 D.函数y=3•2x+1的图象可以由函数y=2x的图象仅通过平移变换得到 |
11. 难度:中等 | |
已知函数f(x)的定义域为(-2,2),导函数为f′(x)=2+cosx,且f(0)=0,则满足f(1+x)+f(x-x2)>0的实数x的取值范围为( ) A.(-1,1) B.(-1,1+) C.(1-,1) D.(1-,1+) |
12. 难度:中等 | |
在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM.若侧棱,则正三棱锥S-ABC外接球的表面积是 ( ) A.12π B.32π C.36π D.48π |
13. 难度:中等 | |
设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2012X1+log2012X2+…+log2012X2011的值为 . |
14. 难度:中等 | |
已知实数,x∈[0,10],执行如图所示的程序框图,则输出的x不小于47的概率为 . |
15. 难度:中等 | |
设函数f(x)=(x>0),观察: f1(x)=f(x)=, f2(x)=f(f1(x))=, f3(x)=f(f2(x))=, f4(x)=f(f3(x))=, … 根据以上事实,由归纳推理可得: 当n∈N*且n≥2时,fn(x)=f(fn-1(x))= . |
16. 难度:中等 | |
函数f(x)=1g(x≠0,x∈R),有下列命题: ①f(x)的图象关于y轴对称; ②f(x)的最小值是2; ③f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数; ④f(x)没有最大值. 其中正确命题的序号是 .(请填上所有正确命题的序号) |
17. 难度:中等 | |
已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21的等比中项. (1)求数列{an}的通项公式 (2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列的前n项Tn. |
18. 难度:中等 | |
红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (Ⅰ)求红队至少两名队员获胜的概率; (Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ. |
19. 难度:中等 | |
(附加题-必做题) 四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (I)证明PA∥平面BDE; (Ⅱ)求二面角B-DE-C的平面角的余弦值; (Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?若存在,请求出F点的位置;若不存在,请说明理由. |
20. 难度:中等 | |
已知椭圆C1:+=1(a>b>0)的长轴长为4,离心率为,F1、F2分别为其左右焦点.一动圆过点F2,且与直线x=-1相切. (Ⅰ)(ⅰ)求椭圆C1的方程; (ⅱ)求动圆圆心C轨迹的方程; (Ⅱ)在曲线上C有两点M、N,椭圆C1上有两点P、Q,满足MF2与共线,与共线,且•=0,求四边形PMQN面积的最小值. |
21. 难度:中等 | |
已知函数f(x)=lnx,g(x)=x2-2x. (1)设h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求h(x)的最大值; (2)证明:当0<b<a时,求证:f(a+b)-f(2b)<; (3)设k∈Z,当x>1时,不等式k(x-1)<xf(x)+3g′(x)+4恒成立,求k的最大值. |
22. 难度:中等 | |
已知直线的极坐标方程为,圆M的参数方程为(其中θ为参数). (Ⅰ)将直线的极坐标方程化为直角坐标方程; (Ⅱ)求圆M上的点到直线的距离的最小值. |