1. 难度:中等 | |
复数在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
2. 难度:中等 | |
已知命题p:∃x∈R,使;命题q:∀x∈R,都有x2+x+1>0.给出下列结论: ①命题“p∧q”是真命题; ②命题“p∧¬q”是假命题; ③命题“¬p∨q”是真命题; ④命题“¬p∨¬q”是假命题. 其中正确的是( ) A.②③ B.②④ C.③④ D.①②③ |
3. 难度:中等 | |
已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的为( ) A.若α⊥γ,β⊥γ,则α∥β B.若m∥α,m∥β,则α∥β C.若m∥α,n∥α,则m∥n D.若m⊥α,n⊥α,则m∥n |
4. 难度:中等 | |
如图的程序框图输出结果S等于( ) A.20 B.35 C.40 D.45 |
5. 难度:中等 | |
若某空间几何体的三视图如图所示,则该几何体的体积是( ) A.2 B.1 C. D. |
6. 难度:中等 | |
设等差数列{an}的前n项和为Sn,a2、a4是方程x2-x-2=0的两个根,则S5=( ) A. B.5 C. D.-5 |
7. 难度:中等 | |
已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是( ) A. B. C. D. |
8. 难度:中等 | |
某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是( ) A.63 B.64 C.65 D.66 |
9. 难度:中等 | |
若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC( ) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 |
10. 难度:中等 | |
从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是( ) A. B. C. D. |
11. 难度:中等 | |
把函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( ) A. B. C. D. |
12. 难度:中等 | |
设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当 x∈(-2,0)时,f(x)=2x,则f(2012)-f(2011)的值为( ) A. B. C.2 D.-2 |
13. 难度:中等 | |
某个容量为100的样本的频率分布直方图如图所示,则数据在区间[8,10)上的频数是 . |
14. 难度:中等 | |
设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为 . |
15. 难度:中等 | |
已知圆x2+y2-4x-2y-6=0的圆心在直线ax+2by-2ab=0上,其中a>0,b>0,则ab的最小值是 . |
16. 难度:中等 | |
已知向量=,=(1,t),若函数f(x)=•在区间上存在增区间,则t的取值范围 . |
17. 难度:中等 | |
已知函数. (Ⅰ)求函数f(x)的最小正周期和值域; (Ⅱ)若a为第二象限角,且,求的值. |
18. 难度:中等 | |
已知数列{an}满足a1=1,an+1=2an+1(n∈N*). (1)求证:数列{an+1}是等比数列,并写出数列{an}的通项公式; (2)若数列{bn}满足,求的值. |
19. 难度:中等 | |
某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,…,8,其中ξ≥5为标准A,ξ≥3为标准B,产品的等级系数越大表明产品的质量越好.已知某厂执行标准B生产该产品,且该厂的产品都符合相应的执行标准.从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7 该行业规定产品的等级系数ξ≥7的为一等品,等级系数5≤ξ<7的为二等品,等级系数3≤ξ<5的为三等品. (1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率; (2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率. |
20. 难度:中等 | |
如图所示,四棱锥P-ABCD中,ABCD为正方形,PA⊥AD,E,F,G分别是线段PA,PD,CD的中点. 求证: (1)BC∥平面EFG; (2)平面EFG⊥平面PAB. |
21. 难度:中等 | |
定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件: ①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; ②f′(x)是偶函数;③f(x)在x=0处的切线与直线y=x+2垂直. (Ⅰ)求函数y=f(x)的解析式; (Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围. |
22. 难度:中等 | |
给定椭圆>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为. (1)求椭圆C的方程和其“准圆”方程. (2)点P是椭圆C的“准圆”上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点.求证:l1⊥l2. |