1. 难度:中等 | |
设全集U={0,l,2,3,4,5},A={0,1},B={},则A∩(CUB)=( ) A.φ B.{3,4} C.{1,3,5} D.{1} |
2. 难度:中等 | |
命题“”的否定是( ) A.∀x∈R,≤0 B.≤0 C.<0 D.∀x∈R,<0 |
3. 难度:中等 | |
右边茎叶图的数据是10名学生1分钟跳绳的成绩,则这10名学生1分钟跳绳成绩的中位数是( ) A.173 B.174 C.175 D.179 |
4. 难度:中等 | |
已知α∈(),且cos,则tanα( ) A. B.- C.-2 D.2 |
5. 难度:中等 | |
执行如图中的程序框图,输出的T值为( ) A.4 B.10 C.18 D.20 |
6. 难度:中等 | |
已知不等式组确定的区域为D,若M(x,y)为区域D上的动点,点A的坐标为(2,1),则|的最大值为( ) A. B.1 C. D. |
7. 难度:中等 | |
已知圆(x-1)2+(y-a)2=4(a>0)被直线x-y-l=0截得的弦长为2,则a的值为( ) A. B. C.-l D.-l |
8. 难度:中等 | |
函数f(x)=的图象( ) A.关于点(2,0)对称 B.关于点(0,2)对称 C.关于点(-2,0)对称 D.关于点(0,-2)对称 |
9. 难度:中等 | |
在△ABC中,若,则mn的值是( ) A. B. C. D. |
10. 难度:中等 | |
函数y=sin(ωx+φ)在一个周期内的图象如图所示,M、N分别是最高、最低点,O为坐标原点且,则函数f(x)的最小正周期为( ) A. B. C.3 D.4 |
11. 难度:中等 | |
已知双曲线的左、右焦点分别是F1、F2,点B(0,b),若△BF1F2的外接圆圆心到双曲线渐近线的距离为,则双曲线的离心率为( ) A. B. C.2 D.2 |
12. 难度:中等 | |
已知{an}是斐波那契数列,满足a1=1,a2=1,an+2=an+1+an(n∈N*).{an}中各项除以4所得余数按原顺序构成的数列记为{bn},则b2012=( ) A.0 B.1 C.2 D.3 |
13. 难度:中等 | |
设i为虚数单位,若为实数,则实数a的值为 . |
14. 难度:中等 | |
如图,曲线OB的方程为(0≤x≤1),为估计阴影部分的面积,采用随机模拟方式产生菇∈(0,1),y∈(0,1)的200个点(x,y),经统计,落在阴影部分的点共134个,则估计阴影部分的面积是 . |
15. 难度:中等 | |
一个几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的表面积是 . |
16. 难度:中等 | |
已知函数在x=1处的切线与x轴平行,若函数f(x)的图象经过四个象限,则实数a的取值范围是 . |
17. 难度:中等 | |
已知三棱柱ADF-BCE中,DF⊥平面ABCD,G是DF的中点. (I)求证:BF∥平面ACG; (Ⅱ)若AD=DF=1,AB=2,∠DAB=60°,求三棱锥B-ADF的体积. |
18. 难度:中等 | |||||||||||||
为了解某居住小区住户的年收入和年饮食支出的关系,抽取了其中5户家庭的调查数据如下表:
(Ⅱ)从5户家庭中任选2户,求“恰有一户家庭年饮食支出小于1.6万元”的概率. |
19. 难度:中等 | |
等差数列{an}的前n项和为Sn,a1=1;等比数列{bn}中,b1=1.若a3+S3=14,b2S2=12. (I)求an与bn; (Ⅱ)设cn=an+2bn,数列{cn}的前n项和为Tn.求证:Tn≥3n. |
20. 难度:中等 | |
已知锐角△ABC中,内角A、B、C的对边分别为a、b、c,a2+b2=4abcosC,且c2=ab. (I)求角C的大小; (Ⅱ)设函数f(x)=sin(ωx-C)-cosωx(ω>0)且直线y=f()与函数y=f(x)图象相邻两交点间的距离为π,求f(A)的取值范围. |
21. 难度:中等 | |
某公园内有一椭圆形景观水池,经测量知,椭圆长轴长为20米,短轴长为16米.现以椭圆长轴所在直线为x轴,短轴所在直线为y轴,建立平面直角坐标系,如图所示. (I)为增加景观效果,拟在水池内选定两点安装水雾喷射口,要求椭圆上各点到这两点距离之和都相等,请指出水雾喷射口的位置(用坐标表示),并求椭圆的方程; (Ⅱ)为增强水池的观赏性,拟划出一个以椭圆的长轴顶点A、短轴顶点B及椭圆上某点M构成的三角形区域进行夜景灯光布置.请确定点肘的位置,使此三角形区域面积最大. |
22. 难度:中等 | |
已知:. (I)若f′(1)=2,求a的值; (Ⅱ)已知a>e-1,若在[1,e](e=2.718…)上存在一点x,使得f(x)<ag(x)成立,求a的取值范围; (Ⅲ)设函数g(x)的图象C1与函数+bx的图象C2交于点A、B,过线段A、B的中点M作x轴的垂线分别交C1、C2于点P、Q,问是否存在点M使C1在P处的切线与C2在Q处的切线平行?若存在,求出M的横坐标;若不存在,请说明理由. |