相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2012年四川省自贡市高考数学三模试卷(理科)(解析版)
一、选择题
详细信息
1. 难度:中等
已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有( )
A.2 个
B.4 个
C.6 个
D.8 个
详细信息
2. 难度:中等
设复数(1-i)10+(1+i)10=a+bi(其中a,b∈R,i为虚数单位),则( )
A.a=0,b=0
B.a=0,b≠0
C.a≠0,b=0
D.a≠0,b≠0
详细信息
3. 难度:中等
要得到manfen5.com 满分网的图象,只需将y=3sin2x的图象( )
A.向左平移manfen5.com 满分网个单位
B.向右平移manfen5.com 满分网个单位
C.向左平移manfen5.com 满分网个单位
D.向右平移manfen5.com 满分网个单位
详细信息
4. 难度:中等
manfen5.com 满分网设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)可能( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
5. 难度:中等
已知数列{an}为等差数列,Sn其前n项和,且a2=3a4-6,则S9等于( )
A.25
B.27
C.50
D.54
详细信息
6. 难度:中等
α,β表示两个不同的平面,l表示既不在α内也不在β内的直线,存在以下三种情况:①l⊥α;②l∥β;③α⊥β.若以其中两个为条件,另一个为结论,构成命题,其中正确命题的个数为( )
A.0
B.1
C.2
D.3
详细信息
7. 难度:中等
已知G是△ABC的重心,且manfen5.com 满分网,其中a,b,c分别为角A、B、C的对边,则cosc=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
8. 难度:中等
设O为坐标原点,A(-1,1),平面区域M为manfen5.com 满分网,随机从区域M中抽取一整点P (横、纵坐标都是整数),则manfen5.com 满分网的概率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
9. 难度:中等
F1 F2分别是双曲线manfen5.com 满分网-manfen5.com 满分网=1的左、右焦点,P为双曲线右支上一点,I是△PF1F2的内心,且manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网,则λ=( )
A.-manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
详细信息
10. 难度:中等
已知抛物线C:x2=4y,直线l:y=-1.PA、PB为曲线C的两切线,切点为A,B.令甲:若P在l上,乙:PA⊥PB;则甲是乙( )条件
A.充要
B.充分不必要
C.必要不充分
D.既不充分也不必要
详细信息
11. 难度:中等
某两个三口之家,拟乘“富康”,“桑塔纳”两辆出租车一起外出郊游,每辆车最多.只能坐4个人,其中两个小孩(另4个为两对夫妇)不能单独坐一辆车,则不同的坐车方法种数为.( )
A.58
B.50
C.48
D.40、
详细信息
12. 难度:中等
定义域在R上的函数f(x)满足:①f(x+2)是奇函数;②当x≥2时,f′(x)≥0.又manfen5.com 满分网<x1+x2<4,则f(x1)+f(x2)的值( )
A.恒小于0
B.恒大于0
C.恒大于等于0
D.恒小于等于0
二、填空题
详细信息
13. 难度:中等
manfen5.com 满分网的展开式中的常数项为manfen5.com 满分网,则实数a   
详细信息
14. 难度:中等
已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0,当直线l被C截得弦长为manfen5.com 满分网时,则a=   
详细信息
15. 难度:中等
在三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,△ABC,△ACD,△ADB的面积分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,则三棱锥A-BCD的外接球的体积为   
详细信息
16. 难度:中等
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f′(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:
①任意三次函数都关于点(-manfen5.com 满分网,f(-manfen5.com 满分网))对称:
②存在三次函数f′(x)=0有实数解x,点(x,f(x))为麵y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=manfen5.com 满分网x3-manfen5.com 满分网x2-manfen5.com 满分网,则,g(manfen5.com 满分网)+g(manfen5.com 满分网)+g(manfen5.com 满分网)+…+g(manfen5.com 满分网)=-105.5.
其中正确命题的序号为    (把所有正确命题的序号都填上).
三、解答题
详细信息
17. 难度:中等
在△ABC中,a,b,c分别是角A、B、C的对边,manfen5.com 满分网=(b,2a-c),manfen5.com 满分网=(cosB,cosC),且manfen5.com 满分网manfen5.com 满分网
(1)求角B的大小;
(2)设f(x)=cos(ωx-manfen5.com 满分网)+sinx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,manfen5.com 满分网]上的最大值和最小值.
详细信息
18. 难度:中等
某教研机构准备举行一次高中数学新课程研讨会,拟邀请50名使用不同版本的一线教师参加,使用不同版本教材的教师人数如下表所示:
版本人教A版人教B版苏教版北师大版
人数2015105
(I)从这50名教师中随机选出2名教师发言,求第一位发言的教师所使用版本是北大师大版的概率;
(II )设使用北师大版的5名教师中有3名男教师,2名女教师,若随机选出2名用北师大版的教师发言,求抽到男教师个数的分布列和期望.
详细信息
19. 难度:中等
如图所示,己知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分别是CC1,BC的中点,P点在A1B1上,且满足manfen5.com 满分网manfen5.com 满分网(λ∈R).
(I)证明:PN⊥AM;
(II)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求出该最大角的正切值;
(III)在(II)条件下求P到平而AMN的距离.

manfen5.com 满分网
详细信息
20. 难度:中等
己知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为e=manfen5.com 满分网,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(I)求椭圆的标准方程;
(II) M为过P且垂直于x轴的直线上的点,若manfen5.com 满分网=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
详细信息
21. 难度:中等
已知数列{an} 中a1=2,点(an,an+1) 在函数f(x)=x2+2x的图象上,n∈N*.数列 {bn} 的前n项和为Sn,且满足b1=1,当n≥2时,Sn2=bn(Sn-manfen5.com 满分网
(1)证明数列{lg(1+an)}是等比数列;
(2)求Sn
(3)设Tn=(1+a1)(1+a2)+…+(1+an),cn=manfen5.com 满分网,求manfen5.com 满分网的值.
详细信息
22. 难度:中等
已知函数f(x)=(x2-manfen5.com 满分网x+manfen5.com 满分网)eax(a>0)
(1)求曲线f(x)在点A(0,f(0))处的切线方程;
(2)讨论函数f(x)的单调性;
(3)是否存在实数a∈(1,2),使f(x)>manfen5.com 满分网当x∈(0,1)时恒成立?若存在,求出实数a;若不存在,请说明理由.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.