1. 难度:中等 | |
已知集合A={1,2,3,4},集合 B={2,4},则 A∩B=( ) A.{2,4} B.{1,3} C.{1,2,3,4} D.∅ |
2. 难度:中等 | |
i为虚数单位,则复数i•(1-i)的虚部为( ) A.i B.-i C.1 D.-1 |
3. 难度:中等 | |
若a∈R,则“a=-2”是“|a|=2”的( ) 条件. A.充分而不必要 B.必要而不充分 C.充要 D.既不充分又不必要 |
4. 难度:中等 | |
若p是真命题,q是假命题,则( ) A.p∧q是真命题 B.p∨q是假命题 C.﹁p是真命题 D.﹁q是真命题 |
5. 难度:中等 | |
在△ABC中,a,b,c分别为角A,B,C所对边,若a=2bcosC,则此三角形一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等腰或直角三角形 |
6. 难度:中等 | |
若函数f(x)=x3(x∈R),则函数y=f(-x)在其定义域上是( ) A.单调递减的偶函数 B.单调递减的奇函数 C.单调递增的偶函数 D.单调递增的奇函数 |
7. 难度:中等 | |
阅读如图所示的程序框图,运行相应的程序,输出的结果是( ) A.3 B.11 C.38 D.123 |
8. 难度:中等 | |
已知实数4,m,9构成一个等比数列,则圆锥曲线的离心率为( ) A. B. C.或 D.或7 |
9. 难度:中等 | |
设如图是某几何体的三视图,则该几何体的体积为( ) A.9π+42 B.36π+18 C. D. |
10. 难度:中等 | |
对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2-2)⊗(x-1),x∈R.若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是( ) A.(-1,1]∪(2,+∞) B.(-2,-1]∪(1,2] C.(-∞,-2)∪(1,2] D.[-2,-1] |
11. 难度:中等 | |
若向量=(1,1),(-1,2),则等于 . |
12. 难度:中等 | |
已知函数则f(f(2))= . |
13. 难度:中等 | |
设x、y满足约束条件,则z=x2+y2的最小值是 . |
14. 难度:中等 | |
(坐标系与参数方程选做题)已知圆C的极坐标方程ρ=2cosθ,则圆C上点到直线l:ρcosθ-2ρsinθ+7=0的最短距离为 . |
15. 难度:中等 | |
(几何证明选讲选做题)如图,PAB、PCD为⊙O的两条割线,若 PA=5,AB=7,CD=11,AC=2,则BD等于 . |
16. 难度:中等 | |
已知等差数列{an}中,a1=1,a3=-3. (I)求数列{an}的通项公式; (II)若数列{an}的前k项和Sk=-35,求k的值. |
17. 难度:中等 | |
已知函数f(x)=sin(ωy+φ)(ω>0,0≤φ≤π)为偶函数,其图象上相邻的两个最低点间的距离为2π. (Ⅰ)求f(x)的解析式; (Ⅱ)若α∈(),f(α+)=,求的值. |
18. 难度:中等 | ||||||||||||||||||||||||||||||||||||||||||||
某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x,价格满意度为y).
(2)求“服务满意度”为3时的5个“价格满意度”数据的方差; (3)为提高食堂服务质量,现从x<3且2≤y<4的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率. |
19. 难度:中等 | |
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3. (1)求证:AB1∥平面BC1D; (2) 求四棱锥B-AA1C1D的体积. |
20. 难度:中等 | |
已知椭圆的离心率为,且经过点. (Ⅰ)求椭圆C的方程; (Ⅱ)过点P(0,2)的直线交椭圆C于A,B两点,求△AOB(O为原点)面积的最大值. |
21. 难度:中等 | |
已知函数x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点. (Ⅰ)当a=1时,求函数f(x)的图象在x=3处的切线方程; (Ⅱ)若存在x<0,使得f′(x)=-9,求a的最大值; (Ⅲ)当a>0时,求函数f(x)的零点个数. |