1. 难度:中等 | |
集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1 C.2 D.4 |
2. 难度:中等 | |
已知tanθ=2,则sin2θ+sinθcosθ-2cos2θ=( ) A.- B. C.- D. |
3. 难度:中等 | |
函数f(x)=1+log2x与g(x)=2-x+1在同一直角坐标系下的图象大致是( ) A. B. C. D. |
4. 难度:中等 | |
“a=1”是“函数f(x)=|x-a|在区间[1,+∞)上为增函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
5. 难度:中等 | |
已知x≠0,函数f(x)满足f(x-)=x2+,则f(x)的表达式为( ) A.f(x)=x+ B.f(x)=x2+2 C.f(x)=x2 D.f(x)=(x-)2 |
6. 难度:中等 | |
某程序框图如图所示,该程序运行后输出的k的值是( ) A.4 B.5 C.6 D.7 |
7. 难度:中等 | |
将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是( ) A.y=2cos2 B.y=2sin2 C. D.y=cos2 |
8. 难度:中等 | |
设函数y=x3与y=()x-2的图象的交点为(x,y),则x所在的区间是( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) |
9. 难度:中等 | |
若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是( ) A.f(x)=4x-1 B.f(x)=(x-1)2 C.f(x)=ex-1 D.f(x)=ln(x-) |
10. 难度:中等 | |
已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B则实数a的取值范围是 . |
11. 难度:中等 | |
若,则cosα+sinα= . |
12. 难度:中等 | |
函数的值域是 . |
13. 难度:中等 | |
函数y=的定义域为 . |
14. 难度:中等 | |||||||||||||||||
已知函数f(x),g(x)分别由下表给出
|
15. 难度:中等 | |
定义在R上的函数f(x)满足f(x)=,则f(3)的值为 . |
16. 难度:中等 | |
设集合A={x|x2-8x+15=0},B={x|ax-1=0},若B⊆A,求实数a的取值集合. |
17. 难度:中等 | |
求函数的单调区间和值域. |
18. 难度:中等 | |
已知,. (1)求sinx-cosx的值; (2)求的值. |
19. 难度:中等 | |
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=,点E是PD的中点. (I)证明PA⊥平面ABCD,PB∥平面EAC; (II)求以AC为棱,EAC与DAC为面的二面角θ的正切值. |
20. 难度:中等 | |
设a为实数,函数f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函数,求a的取值范围. |
21. 难度:中等 | |
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3). (Ⅰ)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式; (Ⅱ)若f(x)的最大值为正数,求a的取值范围. |