1. 难度:中等 | |
若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( ) A.若α∥β,l⊂α,n⊂β,则l∥n B.若α⊥β,l⊂α,则l⊥β C.若l⊥n,m⊥n,则l∥m D.若l⊥α,l∥β,则α⊥β |
2. 难度:中等 | |
如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积为( ) A. B. C. D. |
3. 难度:中等 | |
如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是( ) A. B. C. D. |
4. 难度:中等 | |
如图所示的直观图,其平面图形的面积为( ) A.3 B.6 C. D. |
5. 难度:中等 | |
如图,AB是⊙O的直径,点C是⊙O上的动点,过动点C的直线VC垂直于⊙O所在平面,D、E分别是VA,VC的中点,则下列说法错误的是( ) A.DE⊥平面VBC B.BC⊥VA C.DE∥平面ABC D.面VAB⊥平面ABC |
6. 难度:中等 | |
在直四棱柱ABCD-A1B1C1D1中,当底面四边形ABCD满足条件 时,有A1C⊥B1D1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况) |
7. 难度:中等 | |
如图,四面体P-ABC中,PA=PB=PC=2,∠APB=∠BPC=∠APC=30°.一只蚂蚁从A点出发沿四面体的表面绕一周,再回到A点,问蚂蚁经过的最短路程是 . |
8. 难度:中等 | |
如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别为等边三角形、等腰三角形和菱形,则该几何体体积为 . |
9. 难度:中等 | |
如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是 (填出所有可能的序号). |
10. 难度:中等 | |
在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图1所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图2所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是 . |
11. 难度:中等 | |
已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形. (1)求该几何体的体积V; (2)求该几何体的侧面积S. |
12. 难度:中等 | |
某高速公路收费站入口处的安全标识墩如图(1)所示.墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图(2)、图(3)分别是该标识墩的正(主)视图和俯视图. (1)请画出该安全标识墩的侧(左)视图; (2)求该安全标识墩的体积; (3)证明:直线BD⊥平面PEG. |
13. 难度:中等 | |
如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD. (1)求线段PD的长; (2)若,求三棱锥P-ABC的体积. |
14. 难度:中等 | |
如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=. (1)求证:平面PAC⊥平面PCD; (2)在棱PD上是否存在一点E,使CE∥平面PAB?若存在,请确定E点的位置;若不存在,请说明理由. |
15. 难度:中等 | |
如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1. (1)试求的值; (2)求点C1到平面AFC的距离. |
16. 难度:中等 | |
如图,在等腰梯形ABCD中,上底CD=3,下底AB=4,E、F分别为AB、CD中点,分别沿DE、CE把△ADE与△BCE折起,使A、B重合于点P. (1)求证:PE⊥CD; (2)若点P在面CDE的射影恰好是点F,求EF的长. |
17. 难度:中等 | |
半径为R的球O的截面BCD把球面面积分为两部分,截面圆O1的面积为12π,2OO1=R,BC是截面圆O1的直径,D是圆O1上不同于B,C的一点,CA是球O的一条直径. (1)求证:平面ADC⊥平面ABD; (2)求三棱锥A-BCD的体积最大值; (3)当D分的两部分的比:=1:2时,求D点到平面ABC的距离. |