1. 难度:中等 | |
设,其中a为正实数 (Ⅰ)当a=时,求f(x)的极值点; (Ⅱ)若f(x)为R上的单调函数,求a的取值范围. |
2. 难度:中等 | |
已知函数f(x)=(x-k)ex. (Ⅰ)求f(x)的单调区间; (Ⅱ)求f(x)在区间[0,1]上的最小值. |
3. 难度:中等 | |
已知函数f(x)=x3+3ax2+(3-6a)x+12a-4(a∈R) (Ⅰ)证明:曲线y=f(x)在x=0的切线过点(2,2); (Ⅱ)若f(x)在x=x处取得极小值,x∈(1,3),求a的取值范围. |
4. 难度:中等 | |
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ)求a的值 (Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大. |
5. 难度:中等 | |
已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数). (I)求实数b的值; (II)求函数f(x)的单调区间; (III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由. |
6. 难度:中等 | |
设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l. (I) 求a、b的值,并写出切线l的方程; (II)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围. |
7. 难度:中等 | |
设函数f(x)=x--alnx(a∈R). (Ⅰ)讨论函数f(x)的单调性. (Ⅱ)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k.问:是否存在a,使得k=2-a?若存在,求出a的值;若不存在,请说明理由. |
8. 难度:中等 | |
设 (1)若f(x)在上存在单调递增区间,求a的取值范围. (2)当0<a<2时,f(x)在[1,4]的最小值为,求f(x)在该区间上的最大值. |
9. 难度:中等 | |
设f(x)=x3+mx2+nx. (1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式; (2)如果m+n<10(m,n∈N+),f(x)在单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a) |
10. 难度:中等 | |
已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0. (Ⅰ)求a、b的值; (Ⅱ)如果当x>0,且x≠1时,f(x)>+,求k的取值范围. |
11. 难度:中等 | |
已知函数f(x)=lnx-ax2+(2-a)x. (I)讨论f(x)的单调性; (Ⅱ)设a>0,证明:当0<x<时,f(+x)>f(-x); (Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x,证明:f′(x)<0. |
12. 难度:中等 | |
设函数f(x)=x+ax2+blnx,曲线,y=f(x)过P(1,0),且在P点处的切线率为2. (Ⅰ)求a,b的值; (Ⅱ)证明:f(x)≤2x-2. |
13. 难度:中等 | |
设f(x)=lnx,g(x)=f(x)+f′(x). (Ⅰ)求g(x)的单调区间和最小值; (Ⅱ)讨论g(x)与的大小关系; (Ⅲ)求a的取值范围,使得g(a)-g(x)<对任意x>0成立. |
14. 难度:中等 | |
已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R. (Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程; (Ⅱ)当t≠0时,求f(x)的单调区间; (Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点. |
15. 难度:中等 | |
已知函数f(x)=x+,h(x)=. (Ⅰ)设函数F(x)=18f(x)-x2[h(x)]2,求F(x)的单调区间与极值; (Ⅱ)设a∈R,解关于x的方程lg[f(x-1)-]=2lgh(a-x)-2lgh(4-x); (Ⅲ)设n∈Nn,证明:f(n)h(n)-[h(1)+h(2)+…+h(n)]≥. |
16. 难度:中等 | |
设函数f(x)=a2lnx-x2+ax,a>0. (Ⅰ)求f(x)的单调区间 (Ⅱ)求所有的实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立. 注:e为自然对数的底数. |