1. 难度:中等 | |
把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( ) A.对立事件 B.不可能事件 C.互斥事件但不是对立事件 D.以上答案都不对 |
2. 难度:中等 | |
已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件A={点落在x轴上}与事件B={点落在y轴上}的概率关系为( ) A.P(A)>P(B) B.P(A)<P(B) C.P(A)=P(B) D.P(A)、P(B)大小不确定 |
3. 难度:中等 | |
从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是( ) A.① B.②④ C.③ D.①③ |
4. 难度:中等 | |
福娃是北京2008年第29届奥运会吉祥物,每组福娃都由“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”这五个福娃组成.甲、乙两位好友分别从同一组福姓中各随机选择一个福娃留作纪念,按先甲选再乙选的顺序不放回地选择,则在这两位好友所选择的福娃中,“贝贝”和“晶晶”恰好只有一个被选中的概率为( ) A. B. C. D. |
5. 难度:中等 | |
先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为( ) A. B. C. D. |
6. 难度:中等 | |
一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( ) A. B. C. D. |
7. 难度:中等 | |
甲、乙两人下棋,甲获胜的概率为0.3,两人下成和棋的概率为0.5,那么甲不输的概率是 . |
8. 难度:中等 | |
抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数,事件B为出现2点,已知P(A)=,P(B)=,则出现奇数点或2点的概率是 . |
9. 难度:中等 | |
设有关于x的一元二次方程x2+2ax+b2=0.若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则上述方程有实根的概率为 . |
10. 难度:中等 | |
某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3、0.2、0.1、0.4,求: (1)他乘火车或乘飞机去的概率; (2)他不乘轮船去的概率 (3)如果他去的概率为0.5,请问他有可能是乘何种交通工具去的? |
11. 难度:中等 | |
同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体),两颗骰子向上的点数之和记为ξ. (Ⅰ)求ξ=5的概率P(ξ=5); (Ⅱ)求ξ<5的概率P(ξ<5). |
12. 难度:中等 | |
已知关于x的一元二次函数f(x)=ax2-bx+1,设集合P={1,2,3},Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b. (1)求函数y=f(x)有零点的概率; (2)求函数y=f(x)在区间[1,+∞)上是增函数的概率. |