1. 难度:中等 | |
已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
2. 难度:中等 | |
给定下列四个命题: ①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( ) A.①和② B.②和③ C.③和④ D.②和④ |
3. 难度:中等 | |
已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( ) A.AB∥m B.AC⊥m C.AB∥β D.AC⊥β |
4. 难度:中等 | |
如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在面ABC上的射影H必在( ) A.直线AB上 B.直线BC上 C.直线CA上 D.△ABC内部 |
5. 难度:中等 | |
已知m,n为两条不同的直线,α,β为两个不同的平面,下列四个命题中,错误命题的个数是( ) ①α∥β,m⊈α,n⊈β,则m∥n; ②若m⊈α,n⊈α,且m∥β,n∥β,则α∥β; ③若α⊥β,m⊈α,则m⊥β; ④若α⊥β,m⊥β,m⊄α,则m∥α. A.1 B.2 C.3 D.4 |
6. 难度:中等 | |
如图在长方体ABCD-A1B1C1D1中,三棱锥A1-ABC的面是直角三角形的个数为( ) A.1 B.2 C.3 D.4 |
7. 难度:中等 | |
已知直线a和两个平面α,β,给出下列四个命题: ①若a∥α,则α内的任何直线都与a平行; ②若a⊥α,则α内的任何直线都与a垂直; ③若α∥β,则β内的任何直线都与α平行; ④若α⊥β,则β内的任何直线都与α垂直. 则其中 是真命题. |
8. 难度:中等 | |
如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足 时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可) |
9. 难度:中等 | |
正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为 . |
10. 难度:中等 | |
如图所示,P为△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F.求证:(1)BC⊥平面PAB; (2)AE⊥平面PBC; (3)PC⊥EF. |
11. 难度:中等 | |
如图1,矩形ABCD中,AB=2AD=2a,E为DC的中点,现将△ADE沿AE折起,使平面ADE⊥平面ABCE,如图2. (1)求四棱锥D-ABCE的体积; (2)求证:AD⊥平面BDE. |
12. 难度:中等 | |
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点. (1)设F是棱AB的中点,证明:直线EE1∥平面FCC1; (2)证明:平面D1AC⊥平面BB1C1C. |