1. 难度:中等 | |
已知集合M={y|y=2x,x∈R},N={y|y=x2,x∈R},则M∩N等于( ) A.(0,+∞) B.[0,+∞) C.{2,4} D.{(2,4),(4,16)} |
2. 难度:中等 | |
复数(i是虚数单位)在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
3. 难度:中等 | |
给出如下四个命题: ①若“p且q”为假命题,则p、q均为假命题; ②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”; ③“∀x∈R,x2+1≥1”的否定是“∃x∈R,x2+1≤1; ④在△ABC中,“A>B”是“sinA>sinB”的充要条件. 其中不正确的命题的个数是( ) A.4 B.3 C.2 D.1 |
4. 难度:中等 | |
下列四个几何体中,各几何体的三视图有且仅有两个视图相同的是( ) A.①② B.②③ C.②④ D.①③ |
5. 难度:中等 | |
设{an}是有正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5=( ) A. B. C. D. |
6. 难度:中等 | |
在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一点D,使△ABD为钝角三角形的概率为( ) A. B. C. D. |
7. 难度:中等 | |
设,则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的( ) A.充分必要条件 B.充分而非必要条件 C.必要而非充分条件 D.既非充分也非必要条件 |
8. 难度:中等 | |
如图,有一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别是a m(0<a<12)、4m,不考虑树的粗细.现在想用16m长的篱笆,借助墙角围成一个矩形的花圃ABCD.设此矩形花圃的最大面积为S,若将这棵树围在花圃内,则函数S=f(a)(单位m2)的图象大致是( ) A. B. C. D. |
9. 难度:中等 | |
将函数f(x)=2sin的图象向左平移个单位,得到函数y=g(x)的图象.若y=g(x)在[]上为增函数,则ω的最大值为( ) A.1 B.2 C.3 D.4 |
10. 难度:中等 | |
已知A、B是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,且k1k2≠0.若|k1|+|k2|的最小值为1,则椭圆的离心率( ) A. B. C. D. |
11. 难度:中等 | |
已知圆x2+y2=1与抛物线y=x2+h有公共点,则实数h的取值范围是 . |
12. 难度:中等 | |
若实数x,y满足如果目标函数z=x-y的最小值为-1,则实数m= . |
13. 难度:中等 | |
一组数据xi(1≤i≤8)从小到大的茎叶图为:4|0 1 3 3 4 6 7 8,在如图所示的流程图中是这8个数据的平均数,则输出的s2的值为 . |
14. 难度:中等 | |
设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题: (1)若a∥α且b∥α,则a∥b; (2)若a⊥α且b⊥α,则a∥b; (3)若a∥α且a∥β,则α∥β; (4)若a⊥α且a⊥β,则α∥β. 上面命题中,所有真命题的序号是 . |
15. 难度:中等 | |
若不等式对一切非零实数x恒成立,则实数a的取值范围是 . |
16. 难度:中等 | |
如图,某兴趣小组测得菱形养殖区ABCD的固定投食点A到两条平行河岸线l1、l2的距离分别为4m、8m,河岸线l1与该养殖区的最近点D的距离为1m,l2与该养殖区的最近点B的距离为2m.养殖区在投食点A的右侧,并且该小组测得∠BAD=60°,据此算出养殖区的面积. |
17. 难度:中等 | |
甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分. (Ⅰ)求随机变量ξ的分布列和数学期望; (Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB). |
18. 难度:中等 | |
已知直线的右焦点F,且交椭圆C于A,B两点. (1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程; (2)对于(1)中的椭圆C,若直线L交y轴于点M,且,当m变化时,求λ1+λ2的值. |
19. 难度:中等 | |
如图所示,在三棱锥P-ABC中,,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,. (1)证明△PBC为直角三角形; (2)求直线AP与平面PBC所成角的正弦值. |
20. 难度:中等 | |
已知函数f(x)=2x2,g(x)=alnx(a>0). (1)若直线l交f(x)的图象C于A,B两点,与l平行的另一条直线l1切图象于M,求证:A,M,B三点的横坐标成等差数列; (2)若不等式f(x)≥g(x)恒成立,求a的取值范围; (3)求证:(其中e为无理数,约为2.71828). |
21. 难度:中等 | |
有n个首项都是1的等差数列,设第m个数列的第k项为amk(m,k=1,2,3,…,n,n≥3),公差为dm,并且a1n,a2n,a3n,…,ann成等差数列. (Ⅰ)证明dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),并求p1+p2的值; (Ⅱ)当d1=1,d2=3时,将数列dm分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为(cm)4(cm>0),求数列的前n项和Sn. (Ⅲ)设N是不超过20的正整数,当n>N时,对于(Ⅱ)中的Sn,求使得不等式成立的所有N的值. |