1. 难度:中等 | |
已知集合M={y|y=x2-1,x∈R},,则M∩N=( ) A.[-1,+∞) B. C. D.ϕ |
2. 难度:中等 | |
命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 |
3. 难度:中等 | |
若复数(a∈R,i为虚数单位位)是纯虚数,则实数a的值为( ) A.-2 B.4 C.-6 D.6 |
4. 难度:中等 | |
已知等比数列{an}满足a1+a2=3,a2+a3=6,则a7=( ) A.64 B.81 C.128 D.243 |
5. 难度:中等 | |
已知向量,满足||=||=|+|=1,则向量,夹角的余弦值为( ) A. B.- C. D.- |
6. 难度:中等 | |
设数列{an}是等比数列,其前n项和为Sn,且S3=3a3,则公比q的值为( ) A.- B. C.1或- D.1或 |
7. 难度:中等 | |
已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1∨p2,q2:p1∧p2;q3:(¬p1)∨p2;q4:p1∨(¬p2);其中为真命题的是( ) A.q1和q3 B.q2和q3 C.q1 和q4 D.q2和q4 |
8. 难度:中等 | |
已知函数y=Asin(ωx+φ)+k的最大值是4,最小值是0,最小正周期是,直线是其图象的一条对称轴,则下面各式中符合条件的解析式是( ) A. B. C. D. |
9. 难度:中等 | |
若函数f(x)=(k-1)ax-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=loga(x+k)的图象是( ) A. B. C. D. |
10. 难度:中等 | |
△ABC中,a,b、c分别为∠A、∠B、∠C的对边,如果a,b、c成等差数列,∠B=30°,△ABC的面积为,那么b等于( ) A. B. C. D. |
11. 难度:中等 | |
已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为( ) A.3 B. C.2 D. |
12. 难度:中等 | |
若函数f(x)=2x2-lnx在其定义域的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是( ) A. B. C. D. |
13. 难度:中等 | |
设则不等式f(x)>2的解集为 . |
14. 难度:中等 | |
已知函数f(x)=alog2x+blog3x+2,且,则f(2012)的值为 . |
15. 难度:中等 | |
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4= . |
16. 难度:中等 | |
定义在R上的函数y=f(x)是减函数,y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),则当的取值范围是 . |
17. 难度:中等 | |
若集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=x2-x+,0≤x≤3} (1)若A∩B=∅,求实数a的取值范围; (2)当a取使不等式x2+1≥ax恒成立的最小值时,求(CRA)∩B. |
18. 难度:中等 | |
已知函数f(x)=2sincos-2sin2+. (1)求函数f(x)的最大值,并写出相应的x取值集合; (2)令f(α+)=,且α∈(0,π),求tan2α的值. |
19. 难度:中等 | |
等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数y=bx+r(b>0)且b≠1,b,r均为常数)的图象上. (1)求r的值; (2)当b=2时,记bn=(n∈N*),求数列{bn}的前n项和Tn. |
20. 难度:中等 | |
已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2,且对于任意x∈R恒有f(x)≥2x成立. (1)求实数a,b的值; (2)设g(x)=f(x)-2x,若存在实数t,当x∈[1,m]时,g(x+t)≤x恒成立,求实数m的最大值. |
21. 难度:中等 | |
已知函数f(x)=的图象在点(-2,f(-2))处的切线方程为16x+y+20=0. (1)求实数a、b的值; (2)求函数f(x)在区间[-1,2]上的最大值; (3)曲线y=f(x)上存在两点M、N,使得△MON是以坐标原点O为直角顶点的直角三角形,且斜边MN的中点在y轴上,求实数c的取值范围. |
22. 难度:中等 | |
任选一题作答选修:几何证明选讲如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F. (I)若AC=6,AB=10,求⊙O的半径; (Ⅱ)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由. |
23. 难度:中等 | |
选修4-4:坐标系与参数方程 从极点O作射线,交直线ρcosθ=3于点M,P为射线OM上的点,且|OM|•|OP|=12,若有且只有一个点P在直线ρsinθ-ρcosθ=m,求实数m的值. |
24. 难度:中等 | |
选修4-5:不等式选讲定义min{a,b}=,求函数f(x)=min{|x-2|+|2x+1|,-x2+3x+3}的最大值. |