1. 难度:中等 | |
ABCD是正方形,PA⊥平面AC,且PA=AB,则二面角B-PC-D的度数为( ) A.60° B.90° C.120° D.135° |
2. 难度:中等 | |
如图是某一几何体的三视图,则这个几何体的体积为( ) A.4 B.8 C.16 D.20 |
3. 难度:中等 | |
已知点M在平面ABC内,并且对空间任一点O,则x的值为( ) A. B. C. D.0 |
4. 难度:中等 | |
m和n分别是两个互相垂直的面α、β内的两条直线,α与β交于l,m和n与l既不垂直,也不平行,那么m和n的位置关系是( ) A.可能垂直,但不可能平行 B.可能平行,但不可能垂直 C.可能垂直,也可能平行 D.既不可能垂直,也不可能平行 |
5. 难度:中等 | |
已知三棱锥S-ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为( ) A. B. C. D. |
6. 难度:中等 | |
设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是( ) ①若m⊥α,n∥α,则m⊥n ②若α∥β,β∥γ,m⊥α,则m⊥γ ③若m∥α,n∥α,则m∥n ④若α⊥γ,β⊥γ,则α∥β A.①② B.②③ C.③④ D.①④ |
7. 难度:中等 | |
对于四面体ABCD,给出下列命题: ①相对棱AB与CD所在的直线异面; ②由顶点A作四面体的高,其垂足是△BCD的三条高线的交点; ③若分别作△ABC和△ABD的边AB上的高,则这两条高所在直线异面; ④分别作出三组相对棱中点的连线,所得的三条线段相交于一点; ⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱. 其中正确命题的个数为( ) A.1 B.2 C.3 D.4 |
8. 难度:中等 | |
点P(1,4,-3)与点Q(3,-2,5)的中点坐标是( ) A.(4,2,2,) B.(2,1,1,) C.(2,-1,2,) D.(4,-1,2,) |
9. 难度:中等 | |
把正方形ABCD沿对角线AC折起,当以A、B、C、D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为( ) A.90° B.60° C.45° D.30° |
10. 难度:中等 | |
在棱柱中( ) A.只有两个面平行 B.所有的棱都平行 C.所有的面都是平行四边形 D.两底面平行,且各侧棱也互相平行 |
11. 难度:中等 | |
如图,在正方体ABCD-A1B1C1D1中E、F分别为棱DD1、BB1上的动点,且BF=D1E,设EF与AB所成角为α,EF与BC所成的角为β,则α+β的最小值为( ) A.45° B.60° C.90° D.无法确定 |
12. 难度:中等 | |
一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( ) A.8πcm2 B.12πcm2 C.16πcm2 D.20πcm2 |
13. 难度:中等 | |
如图,在空间四边形OABC中,已知E是线段BC的中点,G为AE的中点,若,,分别记为,,,则用,,表示的结果为= . |
14. 难度:中等 | |
已知,则的最小值是 . |
15. 难度:中等 | |
棱长为1的正方体ABCD-A1B1C1D1中,A1C1到面ABCD的距离为 . |
16. 难度:中等 | |
已知A(-1,0),B(2,1),C(1,-1).若将坐标平面沿x轴折成直二面角,则折后∠BAC的余弦值为 . |
17. 难度:中等 | |
如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D为AC的中点. (1)求证:B1C∥平面A1BD; (2)求证:B1C1⊥平面ABB1A1; (3)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由. |
18. 难度:中等 | |
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,M为AB的中点. (1)求证:BC∥平面PMD; (2)求证:PC⊥BC; (3)求点A到平面PBC的距离. |
19. 难度:中等 | |
如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点. (Ⅰ)求证:平面EFC⊥平面BCD; (Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱锥B-ADC的体积. |
20. 难度:中等 | |
如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点. (Ⅰ)求证:AD⊥PC; (Ⅱ)求三棱锥A-PDE的体积; (Ⅲ)AC边上是否存在一点M,使得PA∥平面EDM,若存在,求出AM的长;若不存在,请说明理由. |
21. 难度:中等 | |
如图,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',点M,N分别为A'B和B'C'的中点. (I)证明:MN∥平面A'ACC'; (II)若二面角A'-MN-C为直二面角,求λ的值. |
22. 难度:中等 | |
在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点. (Ⅰ) 求证:AB∥平面DEG; (Ⅱ) 求证:BD⊥EG; (Ⅲ) 求二面角C-DF-E的余弦值. |