1. 难度:中等 | |
若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=( ) A.{x|-1≤x≤1} B.{x|x≥0} C.{x|0≤x≤1} D.∅ |
2. 难度:中等 | |
已知复数z1=2+i,z2=1-ai,a∈R,若z=z1•z2在复平面上对应的点在虚轴上,则a的值是( ) A.-2 B. C.2 D. |
3. 难度:中等 | |
已知数列{an}的通项公式是an=(-1)n(n+1),则a1+a2+a3+…+a10=( ) A.-55 B.-5 C.5 D.55 |
4. 难度:中等 | |
若x,y满足约束条件,则z=4x+3y的最小值为( ) A.20 B.22 C.24 D.28 |
5. 难度:中等 | |
在回归分析中,残差图中纵坐标为( ) A.残差 B.样本编号 C. D. |
6. 难度:中等 | |
如图所示的程序框图运行的结果是( ) A. B. C. D. |
7. 难度:中等 | |
函数y=Asin(ωx+φ)的部分图象如图所示,则其解析式可以是( ) A. B. C. D. |
8. 难度:中等 | |
已知抛物线C的顶点为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为( ) A.y2=4 B.y2=-4 C.x2=4y D.y2=8 |
9. 难度:中等 | |
A,B,C,D四位同学分别拿着5,4,3,2个暖瓶去打开水,热水龙头只有一个.要使他们打完水所花的总时间(含排队、打水的时间)最少,他们打水的顺序应该为( ) A.D,B,C,A B.D、C、B、A C.A,C,B,D D.任意顺序 |
10. 难度:中等 | |
对任意实数x,y,定义运算x*y=ax+by+cxy,其中a,b,c是常数,等式右边的运算是通常的加法和乘法运算.已知1*2=3,2*3=4,并且有一个非零常数m,使得对任意实数x,都有x*m=x,则m的值是( ) A.4 B.-4 C.-5 D.-6 |
11. 难度:中等 | |
若f(x)=+a是奇函数,则a= . |
12. 难度:中等 | |
如图,是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是 . |
13. 难度:中等 | |
已知直线l:x+2y+k+1=0被圆C:x2+y2=4所截得的弦长为2,则的值为 . |
14. 难度:中等 | |
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2,AB=BC=3.AC的长为 . |
15. 难度:中等 | |
(坐标系与参数方程选做题)已知在极坐标系下,点,,O是极点,则△AOB的面积等于 . |
16. 难度:中等 | |
在△ABC中,角A、B、C所对的边分别为a、b、c(其中a≤b≤c),设向量,,且向量为单位向量. (1)求∠B的大小; (2)若,求△ABC的面积. |
17. 难度:中等 | |
如图,平行四边形ABCD中,CD=1,∠BCD=60.,且BD⊥CD,正方形ADEF和平面ABCD成直二面角,G,H是DF,BE的中点. (Ⅰ)求证:BD⊥平面CDE; (Ⅱ)求证:GH∥平面CDE; (Ⅲ)求三棱锥D-CEF的体积. |
18. 难度:中等 | |||||||||||||||||||||||||||||
某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率? |
19. 难度:中等 | |
已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3 f(n),n∈N*. (1)求数列{an}的通项公式; (2)设bn=,Tn=b1+b2+…+bn,若Tn<m(m∈Z)对n∈N*恒成立,求m的最小值. |
20. 难度:中等 | |
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C2的短轴为MN,且C1,C2的离心率都为e.直线l⊥MN.l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A、B、C、D. (Ⅰ)e=,求|BC|与|AD|的比值; (Ⅱ)当e变化时,是否存在直线l,使得BO∥AN,并说明理由. |
21. 难度:中等 | |
已知函数. (I)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (II)当时,讨论f(x)的单调性. |