相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
《圆锥曲线》2013年广东省十二大市高三二模数学试卷汇编(理科)(解析版)
一、选择题
详细信息
1. 难度:中等
设F1,F2是椭圆manfen5.com 满分网的左右焦点,若直线x=ma (m>1)上存在一点P,使△F2PF1是底角为30°的等腰三角形,则m的取值范围是( )
A.1<m<2
B.m>2
C.1<m<manfen5.com 满分网
D.m>manfen5.com 满分网
详细信息
2. 难度:中等
已知双曲线manfen5.com 满分网=1 的渐近线方程为 y=±manfen5.com 满分网x,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.1
详细信息
3. 难度:中等
方程manfen5.com 满分网+manfen5.com 满分网=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(x)的值域是R;
④f(x)的图象不经过第一象限,
其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个
详细信息
4. 难度:中等
设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是( )
A.y2=-8
B.y2=8
C.y2=-4
D.y2=4
二、填空题
详细信息
5. 难度:中等
设点P是双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,其中F1,F2分别是双曲线的左、右焦点,若tan∠PF2F1=3,则双曲线的离心率为   
详细信息
6. 难度:中等
manfen5.com 满分网如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽    米.
详细信息
7. 难度:中等
过双曲线manfen5.com 满分网的右焦点,且平行于经过一、三象限的渐近线的直线方程是   
三、解答题
详细信息
8. 难度:中等
设椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,其左焦点与抛物线manfen5.com 满分网的焦点相同.
(Ⅰ)求此椭圆的方程;
(Ⅱ)若过此椭圆的右焦点F的直线l与曲线C只有一个交点P,则
(1)求直线l的方程;
(2)椭圆上是否存在点M(x,y),使得manfen5.com 满分网,若存在,请说明一共有几个点;若不存在,请说明理由.
详细信息
9. 难度:中等
已知抛物线C:y2=4x,F是抛物线的焦点,设A(x1,y1),B(x2,y2)是C上异于 原点O的两个不重合点,OA丄OB,且AB与x轴交于点T
(1)求x1x2的值;
(2)求T的坐标;
(3)当点A在C上运动时,动点R满足:manfen5.com 满分网,求点R的轨迹方程.
详细信息
10. 难度:中等
已知动点 M 到点 F(0,1)的距离与到直线 y=4 的距离之和为 5.
(1)求动点 M 的轨迹 E 的方程,并画出图形;
(2)若直线 l:y=x+m 与轨迹 E 有两个不同的公共点 A、B,求m的取值范围;
(3)在(2)的条件下,求弦长|AB|的最大值.

manfen5.com 满分网
详细信息
11. 难度:中等
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>1)的左右焦点为F1,F2,抛物线C:y2=2px以F2为焦点且与椭圆相交于点M(x1,y1)、N(x2,y2),点M在x轴上方,直线F1M与抛物线C相切.
(1)求抛物线C的方程和点M、N的坐标;
(2)设A,B是抛物线C上两动点,如果直线MA,MB与y轴分别交于点P,Q.△MPQ是以MP,MQ为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.
详细信息
12. 难度:中等
已知动点P(x,y)与两个定点M(-1,0),N(1,0)的连线的斜率之积等于常数λ(λ≠0)
(1)求动点P的轨迹C的方程;
(2)试根据λ的取值情况讨论轨迹C的形状;
(3)当λ=2时,对于平面上的定点manfen5.com 满分网,试探究轨迹C上是否存在点P,使得∠EPF=120°,若存在,求出点P的坐标;若不存在,说明理由.
详细信息
13. 难度:中等
在平面直角坐标系xoy中,动点P在椭圆C1manfen5.com 满分网+y2=1上,动点Q是动圆C2:x2+y2=r2(1<r<2)上一点.
(1)求证:动点P到椭圆C1的右焦点的距离与到直线x=2的距离之比等于椭圆的离心率;
(2)设椭圆C1上的三点A(x1,y1),B(1,manfen5.com 满分网),C(x2,y2)与点F(1,0)的距离成等差数列,线段AC的垂直平分线是否经过一个定点为?请说明理由.
(3)若直线PQ与椭圆C1和动圆C2均只有一个公共点,求P、Q两点的距离|PQ|的最大值.
详细信息
14. 难度:中等
如图已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为manfen5.com 满分网的直线t,交l于点A,交圆M于点B,且|AO|=|OB|=2.
(1)求圆M和抛物线C的方程;
(2)设G,H是抛物线C上异于原点O的两个不同点,且manfen5.com 满分网,求△GOH面积的最小值;
(3)在抛物线C上是否存在两点P,Q关于直线m:y=k(x-1)(k≠0)对称?若存在,求出直线m的方程,若不存在,说明理由.

manfen5.com 满分网
详细信息
15. 难度:中等
在平面直角坐标系内,动圆C过定点F(1,0),且与定直线x=-1相切.
(1)求动圆圆心C的轨迹C2的方程;
(2)中心在O的椭圆C1的一个焦点为F,直线l过点M(4,0).若坐标原点O关于直线l的对称点P在曲线C2上,且直线l与椭圆C1有公共点,求椭圆C1的长轴长取得最小值时的椭圆方程.
详细信息
16. 难度:中等
manfen5.com 满分网已知中心在原点O,焦点在x轴上,离心率为manfen5.com 满分网的椭圆过点(manfen5.com 满分网manfen5.com 满分网).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
详细信息
17. 难度:中等
经过点F(0,1)且与直线y=-1相切的动圆的圆心轨迹为M.点A、D在轨迹M上,且关于y轴对称,过线段AD(两端点除外)上的任意一点作直线,使直线与轨迹M在点D处的切线平行,设直线与轨迹M交于点B、C.
(1)求轨迹M的方程;
(2)证明:∠BAD=∠CAD;
(3)若点D到直线AB的距离等于manfen5.com 满分网,且△ABC的面积为20,求直线BC的方程.
详细信息
18. 难度:中等
设椭圆manfen5.com 满分网的左右顶点分别为A(-2,0),B(2,0),离心率e=manfen5.com 满分网.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且|QP|=|PC|.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线AC(C点不同于A,B)与直线x=2交于点R,D为线段RB的中点,试判断直线CD与曲线E的位置关系,并证明你的结论.
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.