1. 难度:中等 | |
复数倒数的虚部为 . |
2. 难度:中等 | |
用如下方法从1004名工人中选取50代表:先用简单随机抽样从1004人中剔除4人,剩下的1000人再按系统抽样的方法选取50人.则工人甲被抽到的概率为 . |
3. 难度:中等 | |
扇形OAB半径为2,圆心角∠AOB=60°,点D是弧AB的中点,点C在线段OA上,且.则的值为 . |
4. 难度:中等 | |
观察下列不等式:≥,≥,≥,…,由此猜测第n个不等式为 .(n∈N*) |
5. 难度:中等 | |
已知函数f(x)=x•log2x+3(x>0),直线与函数f(x)相切于点A(1,m).则直线l的方程为 .(写成直线方程一般式) |
6. 难度:中等 | |
如图,(是根据所输入的x值计算y值的一个算法程序,若x依次取数列 (n∈N*)的项,则所得y值中的最小值为 . |
7. 难度:中等 | |
锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是 . |
8. 难度:中等 | |
在正方体ABCD-A1B1C1D1中,M,N分别是AB1,BC1上的点,且满足AM=BN, 有下列4个结论:①MN⊥AA1;②MN∥AC;③MN∥平面A1B1C1D1;④MN⊥BB1D1D.其中正确的结论的序号是 . |
9. 难度:中等 | |
已知x>0,y>0,且,若x+2y>m2+2m恒成立,则实数m的取值范围是 . |
10. 难度:中等 | |
已知集合A={x|2x-a≤0},B={x|4x-b>0},a,b∈N,且(A∩B)∩N={2,3},由整数对(a,b)组成的集合记为M,则集合M中元素的个数为 . |
11. 难度:中等 | |
一只蚂蚁在边长分别为的三角形区域内随机爬行,则其恰在离三个顶点距离都大于1的地方的概率为 . |
12. 难度:中等 | |
把一个长、宽、高分别为25cm、20cm、5cm的长方体木盒从一个正方形窗口穿过,那么正方形窗口的边长至少应为 . |
13. 难度:中等 | |
设函数f(x)=x•2x+x,A为坐标原点,An为函数y=f(x)图象上横坐标为n(n∈N*)的点,向量,i=(1,0),设θn为an与i的夹角,则= . |
14. 难度:中等 | |
已知椭圆,F1,F2是左右焦点,l是右准线,若椭圆上存在点P,使|PF1|是P到直线l的距离的2倍,则椭圆离心率的取值范围是 . |
15. 难度:中等 | |
已知平面直角坐标系中△ABC顶点的分别为,B(0,0),C(c,0),其中c>0. (1)若c=4m,求sin∠A的值; (2)若,B=,求△ABC周长的最大值. |
16. 难度:中等 | |
已知定点A、B间的距离为2,以B为圆心作半径为2的圆,P为圆上一点,线段AP的垂直平分线l与直线PB交于点M,当P在圆周上运动时,点M的轨迹记为曲线C. (1)建立适当的坐标系,求曲线C的方程,并说明它是什么样的曲线; (2)试判断l与曲线C的位置关系,并加以证明. |
17. 难度:中等 | |
在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,F是C1C上一点,且CF=2a. (1)求证:B1F⊥平面ADF; (2)求三棱锥D-AB1F的体积; (3)试在AA1上找一点E,使得BE∥平面ADF. |
18. 难度:中等 | |
某工厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品,根据以往的经验知道,其次品率P与日产量x(件)之间近似满足关系:(其中c为小于96的正整常数) (注:次品率P=,如P=0.1表示每生产10件产品,有1件次品,其余为合格品.)已知每生产一件合格的仪器可以盈利A元,但每生产一件次品将亏损A/2元,故厂方希望定出合适的日产量. (1)试将生产这种仪器每天的赢利T(元)表示为日产量x(件的函数); (2)当日产量为多少时,可获得最大利润? |
19. 难度:中等 | |
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列. (1)求数列{an}的通项公式; (2)设数列{bn}的前n项和为Tn,且,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2; (3)正数数列{cn}中,an+1=(cn)n+1(n∈N*),求数列{cn}中的最大项. |
20. 难度:中等 | |
已知函数和函数g(x)=lnx,记F(x)=f(x)+g(x). (1)当时,若f(x)在[1,2]上的最大值是f(2),求实数a的取值范围; (2)当a=1时,判断F(x)在其定义域内是否有极值,并予以证明; (3)对任意的,若F(x)在其定义域内既有极大值又有极小值,试求实数a的取值范围. |