1. 难度:中等 | |
设集合A={x|y=lg(1-x)},集合B={y|y=x2},则A∩B=( ) A.(-∞,1) B.(-∞,1] C.[0,1] D.[0,1) |
2. 难度:中等 | |
若(1-i)(a-i)是纯虚数,则实数a=( ) A.1 B.-1 C. D. |
3. 难度:中等 | |
已知,则cos2α的值为( ) A. B. C. D. |
4. 难度:中等 | |
设α、β为两个不同的平面,l、m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若α∥β,则l∥m;②若l⊥m,则α⊥β、那么( ) A.①是真命题,②是假命题 B.①是假命题,②是真命题 C.①②都是真命题 D.①②都是假命题 |
5. 难度:中等 | |
已知正方形的四个顶点分别为O(0,0),A(2,0),B(2,2),C(0,2),直线y=1-2x与x轴、y轴围成的区域为M.在正方形OABC内任取一点P,则点P恰好在区域M内的概率为( ) A. B. C. D. |
6. 难度:中等 | |
如图是一个算法的程序框图,当输入x的值为-9时,其输出的结果是( ) A.9 B.3 C. D. |
7. 难度:中等 | |
已知双曲线的焦点为F1、F2,点M在双曲线上且MF1⊥x轴,则F1到直线F2M的距离为( ) A. B. C. D. |
8. 难度:中等 | |
已知p:∀x>0,x2-ax+1>0,q:a≤2,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分条件也不必要条件 |
9. 难度:中等 | |
正项等比数列{an}的公比q≠1,且a2,,a1成等差数列,则的值为( ) A.或 B. C. D. |
10. 难度:中等 | |
一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是( ) A.1 B.2 C.3 D.4 |
11. 难度:中等 | |
已知向量,若,则m+n的最小值为( ) A. B. C. D. |
12. 难度:中等 | |
已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=ax•g(x)(a>0,且a≠1),.,若数列的前n项和大于62,则n的最小值为( ) A.6 B.7 C.8 D.9 |
13. 难度:中等 | |
为了了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,若高三学生共抽取25名,则高一年级每一位学生被抽到的概率是 . |
14. 难度:中等 | |
在给出的四个点A(0,2)、B(-2,0)、C(0,-2)、D (2,0)中,位于表示的平面区域内的点是 . |
15. 难度:中等 | |
在平面直角坐标系xOy中,过定点C(0,1)作直线与抛物线x2=2y相交于A,B两 点.若点N是点C关于坐标原点O的对称点,则△ANB面积的最小值为 . |
16. 难度:中等 | |
已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有.给出下列命题: ①f(3)=0; ②直线x=-6是函数y=f(x)的图象的一条对称轴; ③函数y=f(x)在[-9,-6]上为增函数; ④函数y=f(x)在[-9,9]上有四个零点. 其中所有正确命题的序号为 (把所有正确命题的序号都填上) |
17. 难度:中等 | |
已知向量,设函数. (1)求f(x)的最小正周期与单调递减区间 (2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为,求a的值. |
18. 难度:中等 | ||||||||||||||||
某电视机生产厂家今年推出A、B、C、D四种款式电视机,每种款式电视机的外观均有黑色、银白色两种.四月份的电视机产量如下表(单位:台):
(1)求x的值. (2)若在C种款式电视机中按颜色进行分层抽样抽取一个容量为6的样本,然后将该样本看成一个总体,从中任取2台,求恰有1台黑色、1台银白色电视机的概率. (3)用简单随机抽样的方法从A种款式电视机中抽取10台,对其进行检测,它们的得分如下:94,92,92,96,97,95,98,90,94,97.如果把这10台电视机的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过2的概率. |
19. 难度:中等 | |
已知:四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,且PA=AB=2,PC与底面ABCD所成角为45,PD的中点为E,F为AB上的动点. (1)求三棱锥E-FCD的体积; (2)当点F为AB中点时,试判断AE与平面PCF的位置关系,并说明理由. |
20. 难度:中等 | |
设x1,x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点. (1)若x1=-1,x2=2,求函f(x)的解析式; (2)若|x1|+|x2|=2,求b的最大值. |
21. 难度:中等 | |
已知圆,定点,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足. (I)求点G的轨迹C的方程; (II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由. |
22. 难度:中等 | |
如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连接MC,MB,OT. (Ⅰ)求证:DT•DM=DO•DC; (Ⅱ)若∠DOT=60°,试求∠BMC的大小. |
23. 难度:中等 | |
已知在平面直角坐标系xOy内,点P(x,y)在曲线C:为参数,θ∈R)上运动.以Ox为极轴建立极坐标系,直线l的极坐标方程为. (Ⅰ)写出曲线C的标准方程和直线l的直角坐标方程; (Ⅱ)若直线l与曲线C相交于A、B两点,点M在曲线C上移动,试求△ABM面积的最大值. |
24. 难度:中等 | |
关于x的不等式lg(|x+3|-|x-7|)<m. (Ⅰ)当m=1时,解此不等式; (Ⅱ)设函数f(x)=lg(|x+3|-|x-7|),当m为何值时,f(x)<m恒成立? |