1. 难度:中等 | |
设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素个数是( ) A.7 B.10 C.25 D.52 |
2. 难度:中等 | |
已知复数a=3+2i,b=4+xi(其中i为虚数单位),若∈R,则实数x的值为( ) A.-6 B.6 C. D.- |
3. 难度:中等 | |
在公差不为零的等差数列|an|中,2a3-a72+2a11=0,数列|bn|是等比数列,且b7=a7,则log2(b6b8)的值为( ) A.2 B.4 C.8 D.16 |
4. 难度:中等 | |
在△ABC中,“•=•”是“||=||”( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
5. 难度:中等 | |
函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象( ) A.向左平移个单位长度 B.向右平移个单位长度 C.向左平移个单位长度 D.向右平移个单位长度 |
6. 难度:中等 | |
在平面直角坐标系xoy中,已知△ABC的顶点A(-4,0)和C(4,0),顶点B在椭圆上,则等于( ) A. B. C. D. |
7. 难度:中等 | |
已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是( ) A.1:π B.1:2π C.2:π D.4:3π |
8. 难度:中等 | |
已知函数f(x)=x3+ax2-bx+1(a、b∈R)在区间[-1,3]上是减函数,则a+b的最小值是( ) A. B. C.2 D.3 |
9. 难度:中等 | |
为预防和控制甲流感,某学校医务室欲将23支相同的温度计分发到高三年级10个班级中,要求分发到每个班级的温度计不少于2支,则不同的分发方式共有( ) A.120种 B.175种 C.220种 D.820种 |
10. 难度:中等 | |
如图,平面α⊥平面β,α∩β=直线l,A,C是α内不同的两点,B,D是β内不同的两点,且A,B,C,D∉直线l,M,N分别是线段AB,CD的中点.下列判断正确的是( ) A.当|CD|=2|AB|时,M,N两点不可能重合 B.M,N两点可能重合,但此时直线AC与直线l不可能相交 C.当AB与CD相交,直线AC平行于l时,直线BD可以与l相交 D.当AB,CD是异面直线时,MN可能与l平行 |
11. 难度:中等 | |
已知,b=,,则执行如图的程序框图后输出的结果等于( ) A. B. C. D.其它值 |
12. 难度:中等 | |
利用计算机在区间(0,1)上产生两个随机数a和b,则方程有实根的概率为( ) A. B. C. D. |
13. 难度:中等 | |
商场共有某品牌的奶粉240件,全部为三个批次的产品,其中A、B、C三个批次的产品数量成等差数列,现用分层抽样的方法抽取一个容量为60的样本,则应从B批次产品中抽取的数量为 件. |
14. 难度:中等 | |
(1+x)n=Cn+Cn1x+Cn2x2+…+Cnnxn(x∈N*)(1+x)n=C,上式两边对x求导后令x=1,可得结论:Cn1+2Cn2+…+rCnr+nCnn=n•2n-1,利用上述解题思路,可得到许多结论.试问:Cn+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)Cnn= . |
15. 难度:中等 | |
数列{an}满足:,记,若对任意的n(n∈N+)恒成立,则正整数t的最小值为 . |
16. 难度:中等 | |
下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图3中直线AM与x轴交与点N(n,0),则m的象就是n,记作f(m)=n 下列说法中正确的命题的序号是 (填出所有正确命题的序号). ①; ②f(x)是奇函数; ③f(x)在定义域上单调递增; ④f(x)的图象关于点(,0)对称 |
17. 难度:中等 | |
已知在△ABC中,三条边a、b、c所对的角分别为A、B、C,向量=(sinA,cosA),=(cosB,sinB),且满足. (1)求角C的大小; (2)若sinA、sinC、sinB成等差数列,且=18,求c的值. |
18. 难度:中等 | |
2010年5月1日,上海世博会举行,在安全保障方面,警方从武警训练基地挑选防爆警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为A、B、C、D)参加挑选,且每人能通过体能、射击、反应的概率分别为.这三项测试能否通过相互之间没有影响. (1)求A能够入选的概率; (2)规定:按入选人数得训练经费(每入选1人,则相应的训练基地得到3000元的训练经费),求该基地得到训练经费的分布列与数学期望. |
19. 难度:中等 | |
已知某几何体的直观图和三视图如图所示,其正视图为直角梯形,侧视图为等腰直角三角形,俯视图为矩形. (Ⅰ)证明:BN⊥平面B1C1N; (II)求二面角C-NB1-C1的余弦值; (III)设M为线段AB的中点,在线段BC上是否存在一点P,使得MP∥平面CNB1?若存在,指出点P的位置;若不存在,请说明理由. |
20. 难度:中等 | |
已知椭圆的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值不小于. (1)求椭圆的离心率e的取值范围; (2)设椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为k(k>0)的直线l与椭圆相交于A,B两点,若OA⊥OB,求直线l被圆F2截得的弦长的最大值. |
21. 难度:中等 | |
已知函数,其中n∈N*,a为常数. (Ⅰ)当n=2时,求函数f(x)的极值; (Ⅱ)当a=1时,若b1,b2,…,bk均非负数,且b1+b2+…+bk=1,求证:f(b1)+f(b2)+…+f(bk)≤k+1. |
22. 难度:中等 | |
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F,且AB=2BP=4, (1)求PF的长度. (2)若圆F与圆O内切,直线PT与圆F切于点T,求线段PT的长度. |
23. 难度:中等 | |
已知曲线C1的参数方程为(θ为参数),曲线C2的参数方程为(t为参数). (1)若将曲线C1与C2上各点的横坐标都缩短为原来的一半,分别得到曲线C1′和C2′,求出曲线C1′和C2′的普通方程; (2)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C2′垂直的直线的极坐标方程. |
24. 难度:中等 | |
设函数f(x)=|x-1|+|x-2|. (1)画出函数y=f(x)的图象; (2)若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a、b∈R)恒成立,求实数x的范围. |