1. 难度:中等 | |
数列{an}共有6项,其中三项是1,两项为2,一项是3,则满足上述条件的数列共有( ) A.24个 B.60个 C.72个 D.120个 |
2. 难度:中等 | |
已知命题:“若x⊥y,y∥z,则x⊥z”成立,那么字母x,y,z在空间所表示的几何图形不能( ) A.都是直线 B.都是平面 C.x,y是直线,z是平面 D.x,z是平面,y是直线 |
3. 难度:中等 | |
设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=( ) A. B. C. D. |
4. 难度:中等 | |
在直三棱柱ABC-A1B1C1中,AA1=AB=AC,M、Q分别是CC1、BC的中点,如果对线段A1B1上任一点P,都有PQ⊥AM,则∠BAC= . |
5. 难度:中等 | |
已知f(x)是奇函数,且对定义域内任意自变量x满足f(1-x)=f(1+x),当x∈(0,1]时,f(x)=ex,则当x∈[-1,0)时,f(x)= ,当x∈(4k,4k+1],k∈N*时,f(x)= . |
6. 难度:中等 | |
口袋中有其中白球9个,红球5个,黑球6个,现从中任取10个,使白球不少于3个,不多于7个,红球不少于2个,不多于5个,黑球不多于3个的取法种数是 . |
7. 难度:中等 | |
如图,已知定圆C:x2+(y-3)2=4,定直线m:x+3y+6=0,过A(-1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点. (Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由. |
8. 难度:中等 | |
设x1,x2是+x(a,b∈R,a>0)的两个极值点,f′(x)为f(x)的导函数. (Ⅰ)如果x1<2<x2<4,求f′(-2)的取值范围; (Ⅱ)如果0<x1<2,x2-x1=2,求证:; (Ⅲ)如果a≥2,且x2-x1=2,x∈(x1,x2)时,函数g(x)=-f′(x)+2(x2-x)的最大值为h(a),求h(a)的最小值. |