1. 难度:中等 | |
若集合A={1,3,x},B={1,x2},A∪B={1,3,x},则满足条件的实数x的个数有( ) A.1个 B.2个 C.3个 D.4个 |
2. 难度:中等 | |
已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是( ) A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥β C.若m∥α,m∥β,则α∥β D.若m⊥α,n⊥α,则m∥n |
3. 难度:中等 | |
复数z1=2+i,z2=1-i,则z1•z2在复平面内的对应点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
4. 难度:中等 | |
已知向量=(1,n),=(-1,n-2),若与共线.则n等于( ) A.1 B. C.2 D.4 |
5. 难度:中等 | |
在等比数列{an}中,如果a1+a2=40,a3+a4=60,那么a7+a8等于( ) A.135 B.100 C.95 D.80 |
6. 难度:中等 | |
若抛物线y2=2px的焦点与椭圆的右焦点重合,则p的值为( ) A.-2 B.2 C.-4 D.4 |
7. 难度:中等 | |
若以连续抛掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率为( ) A. B. C. D. |
8. 难度:中等 | |
某雷达测速区规定:凡车速大于或等于70m/h视为“超速”,同时汽车将受到处罚,如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以得出将被处罚的汽车约有( ) A.30辆 B.40辆 C.60辆 D.80辆 |
9. 难度:中等 | |
设f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则x•f(x)<0的解集是( ) A.{x|-3<x<0或x>3} B.{x|x<-3或0<x<3} C.{x|x<-3或x>3} D.{x|-3<x<0或0<x<3} |
10. 难度:中等 | |
一束光线从点A(-1,1)出发,经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路程是( ) A.3-1 B.2 C.4 D.5 |
11. 难度:中等 | |
按下列程序框图来计算: 如果输入的x=5,应该运算 次才停止. |
12. 难度:中等 | |
垂直于直线2x-6y+1=0且与曲线y=x3+3x2-1相切的直线方程为 . |
13. 难度:中等 | |
若,则cos2θ= . |
14. 难度:中等 | |
在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为 . |
15. 难度:中等 | |
如图,PA切⊙O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转60°到OD,则PD的长为 . |
16. 难度:中等 | |
已知, (Ⅰ)求tanx的值; (Ⅱ)求的值. |
17. 难度:中等 | |
同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种?概率是多少? (3)向上的点数之和小于5的概率是多少? |
18. 难度:中等 | |
如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D、E是CC1、BC的中点,AE=DE (1)求此正三棱柱的侧棱长; (2)正三棱柱ABC-A1B1C1表面积. |
19. 难度:中等 | |
已知点(x,y)在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x2+y2=8;定点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点. (1)求曲线C的方程; (2)求m的取值范围. |
20. 难度:中等 | |
(1)已知二次函数f(x)=ax2+bx+c,满足f(0)=f(1)=0,且f(x)的最小值是,求f(x)的解析式; (2)设f(x)=x2-2ax+2,当x∈[-1,+∞)时,f(x)≥a恒成立,求实数a的取值范围. |
21. 难度:中等 | |
已知数列{an}、{bn}满足:. (1)求b1,b2,b3,b4; (2)求数列{bn}的通项公式; (3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数a为何值时4aSn<bn恒成立. |