1. 难度:中等 | |
已知函数f(x)=,g(x)=. (1)当t=8时,求函数y=f(x)-g(x)的单调区间: (2)求证:当t>0时f(x)≥g(x)对任意正实数x都成立; (3)若存在正实数x,使得g(x)≤4x-对任意正实数t都成立,请直接写出满足这样条件的-个x的值(不必给出求解过程). |
2. 难度:中等 | |
已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x). (Ⅰ)证明:当x≥0时,f(x)≤(x+c)2; (Ⅱ)若对满足题设条件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值. |
3. 难度:中等 | |
已知函数f(x)=lnx-. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)设g(x)=-x2+2bx-4,若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2) 恒成立,求实数b的取值范围. |
4. 难度:中等 | |
已知x>,函数f(x)=x2,h(x)=2e lnx(e为自然常数). (Ⅰ)求证:f(x)≥h(x); (Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由. |
5. 难度:中等 | |
已知函数f(x)=(x∈R). (1)当f(1)=1时,求函数f(x)的单调区间; (2)设关于x的方程f(x)=的两个实根为x1,x2,且-1≤a≤1,求|x1-x2|的最大值; (3)在(2)的条件下,若对于[-1,1]上的任意实数t,不等式m2+tm+1≥|x1-x2|恒成立,求实数m的取值范围. |
6. 难度:中等 | |
设函数x(x∈R),其中m>0. (1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率; (2)求函数f(x)的单调区间与极值; (3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围. |
7. 难度:中等 | |
已知函数f(x)=2lnx-x2-ax(a∈R). (1)求函数f(x)的单调区间; (2)如果函数f(x)有两个不同的零点x1,x2且x1<x2,证明:对满足p+q=1,p≤q的任意正常数,f′(px1+qx2)<0恒成立. |
8. 难度:中等 | |
已知函数f(x)=inx-a(x-1),a∈R (Ⅰ)讨论函数f(x)的单调性; (Ⅱ)当x≥1时,f(x)≤恒成立,求a的取值范围. |
9. 难度:中等 | |
已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数y=h′(x)的图象如图,f(x)=6lnx+h(x). (1)求函数f(x)在x=3处的切线斜率; (2)若函数f(x)在区间上是单调函数,求实数m的取值范围; (3)若函数y=-x,x∈(0,6]的图象总在函数y=f(x)图象的上方,求c的取值范围. |
10. 难度:中等 | |
已知函数f(x)=elnx,g(x)=e-1•f(x)-(x+1).(e=2.718…) (1)求函数g(x)的极大值; (2 )求证:; (3)对于函数f(x)与h(x)定义域上的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的“分界线”.设函数,试探究函数f(x)与h(x)是否存在“分界线”?若存在,请加以证明,并求出k,b的值;若不存在,请说明理由. |