1. 难度:中等 | |
cos300°=( ) A. B.- C. D. |
2. 难度:中等 | |
设P={x|x<1},Q={x|x2<4},则P∩Q( ) A.{x|-1<x<2} B.{x|-3<x<-1} C.{x|1<x<-4} D.{x|-2<x<1} |
3. 难度:中等 | |
由曲线y=x2,y=x3围成的封闭图形面积为( ) A. B. C. D. |
4. 难度:中等 | |
“”是“tanx=1”成立的( ) A.充分不必要条件 B.必要不充分条件 C.充分条件 D.既不充分也不必要条件 |
5. 难度:中等 | |
复数z=在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
6. 难度:中等 | |
为了得到函数y=sin(2x-)的图象,只需把函数y=sin(2x+)的图象( ) A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位 |
7. 难度:中等 | |
函数f(x)=的最小正周期为( ) A. B.π C.2π D.4π |
8. 难度:中等 | |
函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(-a)的值为( ) A.3 B.0 C.-1 D.-2 |
9. 难度:中等 | |
下列命题中的假命题是( ) A.∃x∈R,lgx=0 B.∃x∈R,tanx=1 C.∀x∈R,x3>0 D.∀x∈R,2x>0 |
10. 难度:中等 | |
设,则a,b,c的大小关系是( ) A.a>c>b B.a>b>c C.c>a>b D.b>c>a |
11. 难度:中等 | |
已知sina=,则cos(π-2a)=( ) A.- B.- C. D. |
12. 难度:中等 | |
函数f(x)=2x+3x的零点所在的一个区间是( ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) |
13. 难度:中等 | |
设a=log54,b=(log53)2,c=log45则( ) A.a<c<b B.b<c<a C.a<b<c D.b<a<c |
14. 难度:中等 | |
下列函数中,周期为π,且在上为减函数的是( ) A. B. C. D. |
15. 难度:中等 | |
如为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点( ) A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变 B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变 D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 |
16. 难度:中等 | |
8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为( ) A.A88A92 B.A88C92 C.A88A72 D.A88C72 |
17. 难度:中等 | |
函数的定义域为( ) A.(,1) B.(,∞) C.(1,+∞) D.(,1)∪(1,+∞) |
18. 难度:中等 | |
现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是( ) A.152 B.126 C.90 D.54 |
19. 难度:中等 | |
若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=( ) A.1 B.2 C.-2 D.-1 |
20. 难度:中等 | |
已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是( ) A. B. C.(3,+∞) D.[3,+∞) |
21. 难度:中等 | |
命题“存在x∈R,使得x2+2x+5=0”的否定是 . |
22. 难度:中等 | |
某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答) |
23. 难度:中等 | |
(x-)4的展开式中的常数项为 (用数字作答) |
24. 难度:中等 | |
曲线y=xex+2x+1在点(0,1)处的切线方程为 . |
25. 难度:中等 | |
已知函数f(x)=若f(f(0))=4a,则实数a= . |
26. 难度:中等 | |
设函数f(x)=x-,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是 . |
27. 难度:中等 | |
已知函数f(x)=sin2x-2sin2x (I)求函数f(x)的最小正周期. (II)求函数f(x)的最大值及f(x)取最大值时x的集合. |
28. 难度:中等 | |
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料. (Ⅰ)求甲中奖且乙、丙都没有中奖的概率; (Ⅱ)求中奖人数ξ的分布列及数学期望Eξ. |
29. 难度:中等 | |
设定函数,且方程f′(x)-9x=0的两个根分别为1,4. (Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式; (Ⅱ)若f(x)在(-∞,+∞)无极值点,求a的取值范围. |
30. 难度:中等 | |
已知函数f(x)=(x+1)lnx-x+1 (I)求曲线在(1,f(1))处的切线方程; (Ⅱ)若xf′(x)≤x2+ax+1,求a的取值范围; (Ⅲ)证明:(x-1)f(x)≥0. |