1. 难度:中等 | |
sin585°的值为( ) A. B. C. D. |
2. 难度:中等 | |
“a=+2kπ(k∈Z)”是“cos2a=”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
3. 难度:中等 | |
函数的定义域是( ) A.(-∞,4) B.[3,4] C.(3,4) D.[3,4) |
4. 难度:中等 | |
若0<x<y<1,则( ) A.3y<3x B.logx3<logy3 C.log4x<log4y D. |
5. 难度:中等 | |
函数y=log2x+logx2x的值域为( ) A.(-∞,-1] B.[3,+∞) C.[-1,3] D.(-∞,-1]∪[3,+∞) |
6. 难度:中等 | |
为了得到函数的图象,可以把函数的图象( ) A.向左平移3个单位长度 B.向右平移3个单位长度 C.向左平移1个单位长度 D.向右平移1个单位长度 |
7. 难度:中等 | |
在等差数列{an}中,若a3+a5+a7+a9+a11=100,则3a9-a13的值为( ) A.20 B.30 C.40 D.50 |
8. 难度:中等 | |
已知集合A={x|y=log2(x-1)},B={y|y=2x+1,x∈A},则A∩B=( ) A.φ B.(1,3) C.(3,+∞) D.(1,+∞) |
9. 难度:中等 | |
等差数列{an}的公差d≠0,数列{bn}是等比数列,若a1=b1,a3=b3,a7=b5,则b11=( ) A.a63 B.a36 C.a31 D.a13 |
10. 难度:中等 | |
方程()|x|-m=0有解,则m的取值范围为( ) A.0<m≤1 B.m≥1 C.m≤-1 D.0≤m<1 |
11. 难度:中等 | |
函数f(x)=x3+bx2+cx+d图象如图,则函数y=x2+bx+的单调递增区间为( ) A.(-∞,-2] B.[3,+∞) C.[-2,3] D.[,+∞) |
12. 难度:中等 | |
若函数f(x)=loga(x3-ax)(a>0,a≠1)在区间内单调递增,则a的取值范围是( ) A. B. C. D. |
13. 难度:中等 | |
设集合U={x∈N|0≤x≤8},S={1,2,4,5},T={3,5,7},则S∩(CUT)= . |
14. 难度:中等 | |
已知函数则的值是 . |
15. 难度:中等 | |
已知数列{an}中,a1=2,a2=1,(n≥2,n∈N),其通项公式an= . |
16. 难度:中等 | |
已知f(x)是定义在[-1,1]上的偶函数,且在(0,1]上单调递增,则不等式f(1-x)<f(x2-1)的解集是 . |
17. 难度:中等 | |
记函数f(x)=lg(x2-x-2)的定义域为集合A,函数的定义域为集合B. (1)求A∩B和A∪B; (2)若C={x|4x+p<0},C⊆A,求实数p的取值范围. |
18. 难度:中等 | |
已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围. |
19. 难度:中等 | |
已知数列{an}是首项为,公比的等比数列,设,数列{cn}满足cn=an•bn. (1)求证:{bn}是等差数列; (2)求数列{cn}的前n项和Sn; (3)若对一切正整数n恒成立,求实数m的取值范围. |
20. 难度:中等 | |
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根. (1)求f(x)的解析式; (2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n的值;如果不存在,说明理由. |
21. 难度:中等 | |
已知a>1,函数f(x)=loga(x2-ax+2)在x∈[2,+∞)时的值恒为正. (1)a的取值范围; (2)记(1)中a的取值范围为集合A,函数g(x)=log2(tx2+2x-2)的定义域为集合B.若A∩B≠∅,求实数t的取值范围. |
22. 难度:中等 | |
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值. (Ⅰ)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值; (Ⅱ)过点A(0,16)作曲线y=f(x)的切线,求此切线方程. |