1. 难度:中等 | |
已知PA⊥平面ABCD,PA=AB=AD=2,AC与BD交于E点,BD=2,BC=CD. (1)取PD中点F,求证:PB∥平面AFC. (2)求二面角A-PB-E的余弦值. |
2. 难度:中等 | |
如图所示,在矩形ABCD中,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′-EC-B是直二面角. (1)证明:BE⊥C D′; (2)求二面角D′-BC-E的正切值. |
3. 难度:中等 | |
某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动. (1)试求选出的3种商品中至少有一种是日用商品的概率; (2)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m的奖金.假设顾客每次抽奖时获奖与否的概率都是,请问:商场应将每次中奖奖金数额m最高定为多少元,才能使促销方案对商场有利? |
4. 难度:中等 | |||||||||||
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的变分布列和数学期望. |
5. 难度:中等 | |
(1)若(1+x)n的展开式中,x3的系数是x的系数的7倍,求n; (2)若(ax+1)7(a≠0)的展开式中,x3的系数是x2的系数与x4的系数的等差中项,求a; (3)已知(2x+xlgx)8的展开式中,二项式系数最大的项的值等于1120,求x. |
6. 难度:中等 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角: (1)求第20行中从左到右的第4个数; (2)若第n行中从左到右第14与第15个数的比为,求n的值; (3)求n阶(包括0阶)杨辉三角的所有数的和; (4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k(m,k∈N×)的数学公式表示上述结论,并给予证明.
|
7. 难度:中等 | |
已知A(-2,0)、B(2,0),点C、点D依次满足. (1)求点D的轨迹方程; (2)过点A作直线l交以A、B为焦点的椭圆于M、N两点,线段MN的中点到y轴的距离为,且直线l与点D的轨迹相切,求该椭圆的方程. |
8. 难度:中等 | |
已知曲线C:xy=1,过C上一点An(xn,yn)作一斜率为的直线交曲线C于另一点An+1(xn+1,yn+1),点列An(n=1,2,3,…)的横坐标构成数列{xn},其中. (1)求xn与xn+1的关系式; (2)求证:{}是等比数列; (3)求证:(-1)x1+(-1)2x2+(-1)3x3+…+(-1)nxn<1(n∈N,n≥1). |