相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
上海市2016-2017学年高二下学期期中数学试卷
一、填空题
详细信息
1. 难度:简单

两两平行的三条直线,最多可以确定______个平面.

 

详细信息
2. 难度:简单

为虚数单位)为纯虚数,则实数的值为______.

 

详细信息
3. 难度:简单

的夹角为,则的值为______

 

详细信息
4. 难度:简单

若复数满足为虚数单位),则______.

 

详细信息
5. 难度:简单

若一个长方体顶点的三个面的面对角线长分别是,则长方体的体对角线长是______(用表示)

 

详细信息
6. 难度:简单

关于的方程的一个根是,则______.

 

详细信息
7. 难度:简单

若一个圆锥的底面周长为,侧面积也为,则该圆锥的体积为________.

 

详细信息
8. 难度:中等

一个水平放置的平面图形用斜二测画法得到的直观图是直角梯形,如图所示,,则原平面图形的周长为______.

 

详细信息
9. 难度:简单

设甲、乙两个圆柱的底面积分别为S1S2,体积分别为V1V2,若它们的侧面积相等,且,则的值是________

 

详细信息
10. 难度:中等

如图,直三棱柱的六个顶点都在半球面上,,侧面是半球底面圆的内接正方形,则半球面(不含底面)的面积为______.

 

详细信息
11. 难度:简单

一个四面体的三视图如图所示,则该四面体四个面当中最大面的面积是______.

       

 

详细信息
12. 难度:困难

现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕轴旋转一周后,得一橄榄状的几何体(图),其体积等于______

 

二、单选题
详细信息
13. 难度:中等

表示两条直线,表示平面,下列命题中的真命题为(   

A.,则 B.,则

C.,则 D.,则

 

详细信息
14. 难度:中等

已知命题:为异面直线,平面过直线且与直线平行,则直线与平面的距离等于异面直线之间的距离为真命题.根据上述命题,若为异面直线,且它们之间的距离为,则空间中与均异面且距离也均为的直线的条数为(   

A.0 B.1 C.多于1条,但为有限条 D.无数多条

 

详细信息
15. 难度:中等

如图,在正方形中,分别为线段上的点,,将绕直线,将绕直线各自独立旋转一周,则在所有旋转过程中,直线与直线所成角的最大值为(   

A. B. C. D.

 

详细信息
16. 难度:困难

如图,在正方体中,的中点,为底面内一动点,设与底面所成的角分别为均不为.若,则动点 的轨迹为(   )

A.直线的一部分 B.圆的一部分

C.椭圆的一部分 D.抛物线的一部分

 

三、解答题
详细信息
17. 难度:中等

在北纬线上有两地,它们分别在东经与东经的经线上,又有点在东经,南纬线上,设地球半径为,求:

1两地的球面距离;

2两地的球面距离(用表示)

 

详细信息
18. 难度:中等

如图,在直三棱柱中,分别是的中点.

1)求异面直线所成角的大小;

2)求点到平面之间的距离.

 

详细信息
19. 难度:中等

已知,且满足.

(1)求

(2)若,求证:.

 

详细信息
20. 难度:中等

如图,在直角梯形,点的中点,现沿将平面折起,设.

1)当为直角时,求直线与平面所成角的大小;

2)当为多少时,三棱锥的体积为

3)在(2)的条件下,求此时二面角的大小.

 

详细信息
21. 难度:困难

和平面解析几何的观点相同,在空间中,空间平面和曲面可以看作是适合某种条件的动点的轨迹,在空间直角坐标系中,空间平面和曲面的方程是一个三原方程.

1)类比平面解析几何中直线的方程,写出①过点,法向量为的平面的点法式方程;②平面的一般方程;③在轴上的截距分别为的平面的截距式方程.(不需要说明理由)

2)设为空间中的两个定点,,我们将曲面定义为满足的动点的轨迹,试建立一个适当的空间直角坐标系,求曲面的方程.

3)对(2)中的曲面,指出和证明曲面的对称性,并画出曲面的直观图.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.