1. 难度:简单 | |
经问卷调查,某班学生对摄影分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比“不喜欢”的多12人,按分层随机抽样的方法从全班选出部分学生参加摄影座谈会,其中5位“喜欢”摄影,1位“不喜欢”摄影,3位持“一般”态度.那么全班学生中“喜欢”摄影的人数为________.
|
2. 难度:中等 | |
某学校开展一次“五四”知识竞赛活动,共有三个问题,其中第1、2题满分都是15分,第3题满分是20分.每个问题或者得满分,或者得0分.活动结果显示,每个参赛选手至少答对一道题,有6名选手只答对其中一道题,有12名选手只答对其中两道题.答对第1题的人数与答对第2题的人数之和为26,答对第1的人数与答对第3题的人数之和为24,答对第2题的人数与答对第3题的人数之和为22.则参赛选手中三道题全答对的人数是____;所有参赛选手的平均分是____.
|
3. 难度:中等 | |
设样本数据的均值和方差分别为1和4,若为非零常数,,则的均值和方差分别为( ) A. B. C. D.
|
4. 难度:中等 | |
为了鼓励市民节约用电,某市实行“阶梯式”电价,将每户居民的月用电量分为二档,月用电量不超过200度的部分按0.5元/度收费,超过200度的部分按0.8元/度收费.某小区共有居民1000户,为了解居民的用电情况,通过抽样,获得了今年7月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图. (1)求的值; (2)试估计该小区今年7月份用电量用不超过260元的户数; (3)估计7月份该市居民用户的平均用电费用(同一组中的数据用该组区间的中点值作代表).
|
5. 难度:简单 | |
我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1365石
|
6. 难度:简单 | |
某城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,计划抽取一个容量为21的样本,应采用怎样的抽样方法?并写出抽样过程.
|
7. 难度:中等 | |
“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图. 根据该走势图,下列结论正确的是( ) A.这半年中,网民对该关键词相关的信息关注度呈周期性变化 B.这半年中,网民对该关键词相关的信息关注度不断减弱 C.从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差 D.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值
|
8. 难度:简单 | |
从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布情况,将样本分成5组,绘成频率分布直方图,图中从左到右各小长方形的高之比为,最右边一组频数是6,请结合直方图提供的信息,解答下列问题: (1)样本量是多少? (2)列出频率分布表. (3)估计这次竞赛中,成绩高于60分的学生占总人数的百分比. (4)成绩落在哪个范围内的人数最多?
|
9. 难度:简单 | |
下列两个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( ) A.简单随机抽样;简单随机抽样 B.分层随机抽样;分层随机抽样 C.分层随机抽样;简单随机抽样 D.简单随机抽样;分层随机抽样
|
10. 难度:简单 | |
小吴一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小吴一星期的鸡蛋开支占总开支的百分比为( ) A.1% B.2% C.3% D.5%
|
11. 难度:简单 | |
某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是 ( ) A.3.5 B.3 C.-0.5 D.-3
|
12. 难度:简单 | |
某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A.7 B.8 C.9 D.10
|
13. 难度:简单 | |||||||||||||||||
一个容量100的样本,其数据的分组与各组的频数如下表
则样本数据落在上的频率为( ) A.0.13 B.0.39 C.0.52 D.0.64
|
14. 难度:简单 | |
如图是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为( ) A.11 B.11.5 C.12 D.12.5
|
15. 难度:简单 | |
为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差 C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数
|
16. 难度:简单 | |
在某次测量中得到的A样本数据如下:52,54,54,56,56,56,55,55,55,55.若B样本数据恰好是A样本数据都加6后所得数据,则A,B两样本的下列数字特征对应相同的是( ) A.众数 B.平均数 C.中位数 D.标准差
|
17. 难度:简单 | |
某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为( ) A.85,85,85 B.87,85,86 C.87,85,85 D.87,85,90
|
18. 难度:简单 | |
在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A.32 B.0.2 C.40 D.0.25
|
19. 难度:简单 | |
如图:样本A和B分别取自两个不同的总体,他们的样本平均数分别为和,样本标准差分别为和,则( ) A. B. C. D.
|
20. 难度:中等 | |
某公司位员工的月工资(单位:元)为,,…,,其均值和方差分别为和,若从下月起每位员工的月工资增加元,则这位员工下月工资的均值和方差分别为( ) A., B., C., D.,
|
21. 难度:中等 | |
某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.
|
22. 难度:简单 | |
某地区对某路段公路上行驶的汽车速度实施监控,从中抽取50辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在70 km/h以下的汽车有 辆.
|
23. 难度:简单 | |
某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为_____.
|
24. 难度:简单 | |
从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知_____.若要从身高在三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在内的学生中选取的人数应为________。
|
25. 难度:简单 | |
在浙江省和青海省各取面积大小一样的A,B两块区域,分别调查人均可支配收入.获得数据显示,浙江省的A区域的人均可支配收入为35537元,青海省的B区域的人均可支配收入为24542元. (1)能否得到这两块区域的人均可支配收入为(元)? (2)若“A区域为70万人,B区域为30万人”,请问这两块区域的人均可支配收入为多少?
|
26. 难度:中等 | |||||||||||||||||
某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:
(1)在这10天中,该公司用水量的平均数是多少? (2)在这10天中,该公司每天用水量的中位数是多少? (3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?
|
27. 难度:简单 | |
两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下: 甲 乙 (1)哪台机床次品数的均值较小? (2)哪台机床的生产状况比较稳定?
|
28. 难度:简单 | |
甲、乙两位同学相约晚上在某餐馆吃饭.他们分别在A,B两个网站查看同一家餐馆的好评率.甲在网站A查到的好评率是98%,而乙在网站B查到的好评率是85%.综合考虑这两个网站的信息,应该如何得到这家餐馆的好评率?
|
29. 难度:简单 | |
甲、乙两班参加了同一学科的考试,其中甲班50人,乙班40人.甲班的平均成绩为80.5分,方差为500;乙班的平均成绩为85分,方差为360.那么甲、乙两班全部90名学生的平均成绩和方差分别是多少?
|
30. 难度:中等 | |||||||||||
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求图中a的值; (2)根据频率分布直方图,估计这100名学生语文成绩的平均分; (3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
|