1. 难度:简单 | |
已知点A,B,C在圆上运动,且ABBC,若点P的坐标为(2,0),则的最大值为( ) A. 6 B. 7 C. 8 D. 9
|
2. 难度:中等 | |
已知,,试求的最小值.
|
3. 难度:简单 | |
已知,且,求与的坐标.
|
4. 难度:简单 | |
在等腰三角形中,已知顶角的正弦值为,试求该三角形底角的正弦、余弦和正切值.
|
5. 难度:中等 | |
已知向量的模分别是,,求的最大值和最小值.
|
6. 难度:中等 | |
已知,求的值.
|
7. 难度:中等 | |
在中,,D为的中点,E为的重心,F为的外心,证明:.
|
8. 难度:简单 | |
已知是第一象限的角,且,那么_______.
|
9. 难度:简单 | |
在中,是的中点,,点在上且满足,则等于( ) A. B. C. D.
|
10. 难度:中等 | |
平面向量满足,,在上的投影为5,则的值为( ) A.2 B.4 C.8 D.16
|
11. 难度:中等 | |
已知是两个非零向量,且,则与的夹角为______.
|
12. 难度:中等 | |
在平面直角坐标系中,已知向量,,. (1)若,求的值; (2)若与的夹角为,求的值.
|
13. 难度:中等 | |
若,则() A. B. C. D.
|
14. 难度:简单 | |
已知,,求的值.
|
15. 难度:简单 | |
已知,求证:.
|
16. 难度:中等 | |
已知,,,其中. (1)当时,求x值的集合. (2)设函数, ①求的最小正周期; ②写出函数的单调增区间; ③写出函数的图像的对称轴方程.
|
17. 难度:中等 | |
若向量,则下列结论正确的是( ) A. B.. C. D.
|
18. 难度:简单 | |
=( ) A. B. C. D.
|
19. 难度:中等 | |
函数,则的最小正周期为( ) A. B. C. D.
|
20. 难度:简单 | |
设是两个单位向量,且,那么它们的夹角等于( ) A. B. C. D.
|
21. 难度:中等 | |
若,则( ) A. B. C. D.
|
22. 难度:简单 | |
关于函数,下列结论正确的是 A.有最大值3,最小值-1 B.有最大值2,最小值-2 C.有最大值2,最小值0 D.有最大值3,最小值0
|
23. 难度:简单 | |
设,向量,,,且,,则 =( ) A. B. C. D.10
|
24. 难度:简单 | |
在中,,,是边上的中线,则( ) A. B. C. D.7
|
25. 难度:简单 | |
若,,则( ) A. B. C. D.
|
26. 难度:简单 | |
( ) A. B. C.1 D.3
|
27. 难度:简单 | |
已知向量满足,与的夹角为,若对一切实数x,恒成立,则的取值范围是( ) A. B. C. D.
|
28. 难度:困难 | |
已知、、是平面向量,是单位向量.若非零向量与的夹角为,向量满足,则的最小值是( ) A. B. C.2 D.
|
29. 难度:中等 | |
在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称. 若角α的终边经过点,则____.
|
30. 难度:简单 | |
在平面直角坐标系中,已知点、,、是轴上的两个动点,且,则的最小值为____.
|
31. 难度:简单 | |
__________.
|
32. 难度:中等 | |
若,,且,其中,则_________.
|
33. 难度:简单 | |
已知,,且,,求的值.
|
34. 难度:简单 | |
设A,B,C,D为平面内的四点,且,,. (1)若,求点D的坐标; (2)设向量,,若与垂直,求实数k的值.
|
35. 难度:中等 | |
如图,平行四边形ABCD中,=a,=b,H,M分别是AD,DC的中点,F为BC上一点,且BF=BC. (1)以a,b为基底表示向量与; (2)若|a|=3,|b|=4,a与b的夹角为120°,求·.
|
36. 难度:简单 | |
已知= (1)求的值; (2)求的值.
|
37. 难度:中等 | |
已知点,点为直线上的一个动点. (Ⅰ)求证:恒为锐角; (Ⅱ)若四边形为菱形,求的值.
|
38. 难度:中等 | |
已知向量,,. (1)求函数的最大值及取得最大值时x的值; (2)若方程在区间上有两个不同的实数根,求实数a的取值范围.
|