1. 难度:简单 | |
的值是( ) A. B. C. D.
|
2. 难度:简单 | |
函数的定义域为( ) A. B. C. D.
|
3. 难度:简单 | |
满足的集合的个数为( ) A. B. C. D.
|
4. 难度:简单 | |
在梯形中,,,是边上的点,且.若记,,则( ) A. B. C. D.
|
5. 难度:简单 | |
已知,是第三象限角,则的值为( ) A. B. C. D.
|
6. 难度:简单 | |
已知向量,,,若,,则( ) A. B. C. D.
|
7. 难度:简单 | |
已知,,,则( ) A. B. C. D.
|
8. 难度:简单 | |
在平面直角坐标系中,设角的终边上任意一点的坐标是,它与原点的距离是,规定:比值叫做的正余混弦,记作.若,则( ) A. B. C. D.
|
9. 难度:简单 | |
已知全集,集合、满足,则下列选项正确的有( ) A. B. C. D.
|
10. 难度:简单 | |
已知、、是三个非零向量,则下列结论正确的有( ) A.若,则 B.若,,则 C.若,则 D.若,则
|
11. 难度:简单 | |
下列函数中,既是偶函数,又在区间上单调递减的函数是( ) A. B. C. D.
|
12. 难度:中等 | |
如图所示,点、是函数的图象与轴的交点,点在、之间的图象上运动,若,且当的面积最大时,,则( ) A. B. C.的单调增区间为 D.的图象关于直线对称
|
13. 难度:简单 | |
计算:______.
|
14. 难度:简单 | |
已知函数,若,则______.
|
15. 难度:中等 | |
如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.
|
16. 难度:中等 | |
已知函数,若函数恰有个不同的零点,则实数的取值范围是______.
|
17. 难度:中等 | |
设全集,集合,. (1)当时,求; (2)在①,②,③这三个条件中任选一个,求实数的取值范围.
|
18. 难度:中等 | |
已知函数. (1)求的周期和单调区间; (2)若,,求的值.
|
19. 难度:中等 | |
已知函数. (1)判断并证明的奇偶性; (2)求函数在区间上的最小值和最大值.
|
20. 难度:中等 | |
如图,、分别是的边、上的点,且,,交于. (1)若,求的值; (2)若,,,求的值.
|
21. 难度:中等 | |
“百姓开门七件事,事事都会生垃圾,垃圾分类益处多,环境保护靠你我”,为了推行垃圾分类,某公司将原处理垃圾可获利万元的一条处理垃圾流水线,通过技术改造后,开发引进生态项目.经过测算,发现该流水线改造后获利万元与技术投入万元之间满足的关系式:.该公司希望流水线改造后获利不少于万元,其中为常数,且. (1)试求该流水线技术投入的取值范围; (2)求流水线改造后获利的最大值,并求出此时的技术投入的值.
|
22. 难度:困难 | |
已知函数,,. (1)若,解关于的方程; (2)设,函数在区间上的最大值为3,求的取值范围; (3)当时,对任意,函数在区间上的最大值与最小值的差不大于1,求的取值范围.
|