1. 难度:简单 | |
计算的结果等于( ) A.5 B. C.9 D.
|
2. 难度:简单 | |
函数中自变量的取值范围是( ) A. B. C. D.
|
3. 难度:简单 | |
的值等于( ) A. B. C.1 D.
|
4. 难度:简单 | |
下列图形中,可以看作是中心对称图形的是( ) A. B. C. D.
|
5. 难度:简单 | |
如图,天平右盘中的每个砝码的质量都是,则物体的质量的取值范围,在数轴上可表示为( ) A. B. C. D.
|
6. 难度:简单 | |
把分式方程的两边同时乘以,约去分母,得( ) A. B. C. D.
|
7. 难度:简单 | |
若点在反比例函数的图像上,则的大小关系是( ) A. B. C. D.
|
8. 难度:简单 | |
在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存.现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1∶2∶3∶5.若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是( ) A.甲 B.乙 C.丙 D.丁
|
9. 难度:简单 | |
如图,在正方形中,分别为的中点,为对角线上的一个动点,则下列线段的长等于最小值的是( ) A. B. C. D.
|
10. 难度:中等 | |
已知抛物线(为常数,)经过点,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为( ) A.0 B.1 C.2 D.3
|
11. 难度:简单 | |
不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.
|
12. 难度:简单 | |
如图,在中,弦,圆周角,且为的直径,则的长为_______.
|
13. 难度:中等 | |
若实数满足:且,则的值为_________.
|
14. 难度:中等 | |
如图,在等边中,分别为的中点,于点为的中点,连接,且,则的面积为__________.
|
15. 难度:简单 | |
解不等式组 请结合题意填空,完成本题的解答. (1)解不等式(1),得____________. (2)解不等式(2),得__________. (3)把不等式(1)和(2)的解集在数轴上表示出来: (4)原不等式组的解为____________.
|
16. 难度:简单 | |
某养鸡场有2500只鸡准备对外出售从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②请根据相关信息,解答下列问题:
(1)图①中的值为___________; (2)统计这组数据的平均数、众数和中位数; (3)根据样本数据,估计这2500只鸡中,质量为的约有多少只?
|
17. 难度:中等 | |
已知是的直径,弦与相交,.
(1)如图①,若为弧的中点,求和的大小; (2)如图②,过点作的切线,与的延长线交于点,若,求的大小.
|
18. 难度:困难 | |
在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为.
(1)如图①,当点落在边上时,求点的坐标; (2)如图②,当点落在线段上时,与交于点. ①求证;②求点的坐标. (3)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).
|
19. 难度:困难 | |
在平面直角坐标系中,点,点.已知抛物线(是常数),顶点为. (1)当抛物线经过点时,求顶点的坐标; (2)若点在轴下方,当时,求抛物线的解析式; (3)无论取何值,该抛物线都经过定点.当时,求抛物线的解析式.
|