相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2020届高三2月第01期(考点09)(文科)-《新题速递·数学》
一、单选题
详细信息
1. 难度:简单

影壁墙,也称为照壁,古称萧墙,是我国传统建筑中用于遮挡视线的墙壁.影壁墙通常有一字形、八字形等,它具有建筑学与人文学的重要意义,有很高的审美价值.如图是一面影壁墙的示意图,该图是由一个长为6,宽为4的矩形截去四个全等的腰长为1的等腰直角三角形后与一个边长为的正方形组成.在该示意图内随机取一点,则此点取自中间正方形内部的概率是(   

A. B. C. D.

 

详细信息
2. 难度:简单

某雷达测速区规定:凡车速超过的汽车视为“超速”,并将受到处罚.如图是某路段的一个检测点对1000辆汽车的车速进行检测所得结果的频率分布直方图,则从图中得出将被处罚的汽车大约有(   

A.60 B.50 C.15 D.5

 

详细信息
3. 难度:中等

底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥,该四棱锥的体积为,现在半球内任取一点,则该点在正四棱锥内的概率为(   

A. B. C. D.

 

详细信息
4. 难度:简单

随着人口老龄化的不断加快,我国出现了一个特殊的群体——“空巢老人”.这些老人或经济困难,或心理寂寞,亟需来自社会的关心关爱。为此,社区志愿者开展了暖巢行动,其中AB两个小区空巢老人的年龄如图所示,则A小区空巢老人年龄的平均数和B小区空巢老人年龄的中位数分别是(   

A.83.583 B.8484.5 C.8584 D.84.584.5

 

详细信息
5. 难度:简单

为了纪念中华人民共和国成立70周年,某单位计划印制纪念图案.为了测算纪念图案的面积,如图所示,作一个面积约为的正六边形将其包含在内,并向正六边形内随机投掷300个点,已知有124个点落在纪念图案部分,据此可以估计纪念图案的面积约为(    )

A. B. C. D.

 

详细信息
6. 难度:中等

已知,从这四个数中任取一个数,使函数有极值点的概率为(   

A. B. C. D.1

 

二、填空题
详细信息
7. 难度:简单

由不等式组 确定的平面区域记为,由不等式组 确定的平面区域记为,若在中随机取一点,则该点恰好在内的概率为________.

 

详细信息
8. 难度:简单

我国历法中将一年分为春、夏、秋、冬四个季节,每个季节有六个节气,如夏季包含立夏、小满、芒种、夏至、小暑以及大暑.某美术学院安排甲、乙两位同学绘制春、夏、秋、冬四个季节的彩绘,每位同学绘制两个季节,则甲同学绘制春、夏两个季节的概率为__________.

 

详细信息
9. 难度:简单

某公司为确定明年投入某产品的广告支出,对近5年的年广告支出(单位:万元)与年销售额(单位:万元)进行了初步统计,如下表所示,经测算,年广告支出与年销售额满足线性回归方程,则的值为_____.

年广告支出/万元

2

3

5

7

8

年销售额/万元

28

37

60

70

 

 

 

三、解答题
详细信息
10. 难度:简单

一研学实践活动小组利用课余时间,对某公司1月份至5月份销售某种产品的销售量及销售单价进行了调查,月销售单价(单位:元)和月销售量(单位:百件)之间的一组数据如下表所示:

月份

1

2

3

4

5

月销售单价(元)

1.6

1.8

2

2.2

2.4

月销售量(百件)

10

8

7

6

4

 

1)根据15月份的数据,求出关于的回归直线方程;

2)预计在今后的销售中,月销售量与月销售单价仍然服从(1)中的关系,若该种产品的成本是1/件,那么该产品的月销售单价应定为多少元才能获得最大月利润?(注:利润=销售收入-成本)

(回归直线方程,其中.参考数据:

 

详细信息
11. 难度:简单

某电视台举行一个比赛类型的娱乐节目,AB两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将A队第六位选手的成绩没有给出,并且告知大家B队的平均分比A队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得晋级”.

1)根据茎叶图中的数据,求出A队第六位选手的成绩;

2)主持人从A队所有选手成绩中随机抽取2个,求至少有一个为晋级的概率;

 

详细信息
12. 难度:简单

随着我国人民生活水平的提高,居民家庭教育投资观念不断加强,从整个社会到单个居民家庭都非常重视教育投入.为了了解单个居民家庭教育投入占家庭收入的百分比,现对某小区户人家进行了调查,得到的频率分布直方图如下:

1)求教育投入占家庭收入的百分比在的户数;

2)估计教育投入占家庭收入的百分比的平均数.

 

详细信息
13. 难度:中等

某省在2017年启动了“3+3”高考模式.所谓“3+3”高考模式,就是语文、数学、外语(简称语、数、外)为高考必考科目,从物理、化学、生物、政治、历史、地理(简称理、化、生、政、史、地)六门学科中任选三门作为选考科目.该省某中学2017级高一新生共有990人,学籍号的末四位数从00010990.

1)现从高一学生中抽样调查110名学生的选考情况,问:采用什么样的抽样方法较为恰当?(只写出结论,不需要说明理由)

2)据某教育机构统计,学生所选三门学科在将来报考专业时受限制的百分比是不同的.该机构统计了受限百分比较小的十二种选择的百分比值,制作出如下条形图.

设以上条形图中受限百分比的均值为,标准差为.如果一个学生所选三门学科专业受限百分比在区间内,我们称该选择为恰当选择”.该校李明同学选择了化学,然后从余下五门选考科目中任选两门.问李明的选择为恰当选择"的概率是多少?(均值,标准差均精确到0.1

(参考公式和数据:)

 

详细信息
14. 难度:简单

某学校为了了解高一年级学生学习数学的状态,从期中考试成绩中随机抽取50名学生的数学成绩,按成绩分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

(1)由频率分布直方图,估计这50名学生数学成绩的中位数和平均数(保留到0.01);

(2)该校高一年级共有1000名学生,若本次考试成绩90分以上(含90分)为优秀等次,则根据频率分布直方图估计该校高一学生数学成绩达到优秀等次的人数.

 

详细信息
15. 难度:简单

为弘扬中华民族优秀传统文化,树立正确的价值导向,落实立德树人根本任务,某市组织30000名高中学生进行古典诗词知识测试,根据男女学生人数比例,使用分层抽样的方法从中随机抽取100名学生,记录他们的分数,整理所得频率分布直方图如图:

)规定成绩不低于60分为及格,不低于85分为优秀,试估计此次测试的及格率及优秀率;

)试估计此次测试学生成绩的中位数;

)已知样本中有的男生分数不低于80分,且样本中分数不低于80分的男女生人数相等,试估计参加本次测试30000名高中生中男生和女生的人数.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.