1. 难度:简单 | |
已知集合,,则( ) A. B. C. D.
|
2. 难度:简单 | |
函数的定义域是( ) A. B. C. D.
|
3. 难度:简单 | |
下列说法正确的是( ) A.多面体至少有3个面 B.有2个面平行,其余各面都是梯形的几何体是棱台 C.各侧面都是正方形的四棱柱一定是正方体 D.六棱柱有6条侧棱,6个侧面,侧面均为平行四边形
|
4. 难度:中等 | |
如图,在三棱锥P-ABQ中,D,C,E,F分别是AQ,BQ,AP,BP的中点,PD与EQ交于点G,PC与FQ交于点H,连接GH,则AB与GH的关系是 ( ) A.平行 B.垂直 C.异面 D.平行或垂直
|
5. 难度:简单 | |
已知函数在区间上单调递增,则实数的取值范围是( ) A. B. C. D.
|
6. 难度:简单 | |
如图,在三棱柱中,M,N分别为棱,的中点,过作一平面分别交底面三角形的边,于点E,F,则( ) A. B.四边形为梯形 C.四边形为平行四边形 D.
|
7. 难度:简单 | |
设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是( ) A.若,,,则 B.若,,,则 C.若,,,则 D.若,,,则
|
8. 难度:中等 | |
已知定义在上的偶函数在上单调递减,且,则满足不等式的x的取值范围为( ) A. B. C. D.
|
9. 难度:简单 | |
如图,在正方体中,点E,F,G分别是棱,,的中点,过E,F,G三点作该正方体的截面,则下列说法错误的是( ) A.在平面内存在直线与平面平行 B.在平面内存在直线与平面垂直 C.平面平面 D.直线与所成角为
|
10. 难度:中等 | |
已知函数 ,则的零点个数为( ) A.3 B.4 C.5 D.6
|
11. 难度:简单 | |
已知集合,则集合A真子集个数是______.
|
12. 难度:简单 | |
已知函数则的值为______.
|
13. 难度:简单 | |
若幂函数的图象经过点,则实数a的值为______.
|
14. 难度:简单 | |
某简单几何体的三视图如图所示,则该几何体的体积是______.
|
15. 难度:简单 | |
某停车场规定:停车第一个小时6元,以后每个小时4元;超过5个小时,每个小时5元;不足一小时按一小时计算,一天内60元封顶.小林与小曾在该停车场当天分别停车4.5小时,13小时,则他们两人在该停车场共需交停车费________元.
|
16. 难度:中等 | |
已知三棱锥的各顶点均在半径为2的球面上,且,则三棱锥体积的最大值为______.
|
17. 难度:简单 | |
(1)计算:; (2)解不等式.
|
18. 难度:简单 | |
如图是一个搭建在空地上的帐篷,它的下部是一个正六棱柱,上部是一个正六棱锥,其中帐篷的高为,正六棱锥的高为,且,. (1)求帐篷的表面积(不包括底面); (2)求帐篷的容积(材料厚度忽略不计).
|
19. 难度:简单 | |
已知函数(,且)的定义域为. (1)判断的奇偶性; (2)当时,求证:在定义域内单调递减.
|
20. 难度:简单 | |
如图,在多面体中,平面,四边形为菱形,四边形为梯形,且,,,,M为线段的中点. (1)求证:平面; (2)求平面将多面体分成的两个部分的体积之比.
|
21. 难度:困难 | |
已知函数,. (1)解不等式; (2)设函数,若在上有零点,求的取值范围.
|
22. 难度:中等 | |
如图,在四棱锥中,底面为平行四边形,,,,平面平面,点为上一点. (1)若平面,求证:点为中点; (2)求证:平面平面.
|