1. 难度:简单 | |
某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则 A.0.7 B.0.6 C.0.4 D.0.3
|
2. 难度:简单 | |
设,则随机变量的分布列是: 则当在内增大时( ) A. 增大 B. 减小 C. 先增大后减小 D. 先减小后增大
|
3. 难度:简单 | |
甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.
|
4. 难度:困难 | |
在平面直角坐标系xOy中,设点集,令.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离. (1)当n=1时,求X的概率分布; (2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).
|
5. 难度:中等 | |
设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. (Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望; (Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.
|
6. 难度:中等 | |
某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立. (1)记件产品中恰有件不合格品的概率为,求的最大值点; (2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用. (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
|
7. 难度:困难 | |
已知一个口袋有m个白球,n个黑球(m,n ,n 2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n). (1)试求编号为2的抽屉内放的是黑球的概率p; (2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明
|
8. 难度:中等 | |
盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率; (2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数分别为,随机变量表示的最大数,求的概率分布和数学期望.
|
9. 难度:中等 | |
本着健康、低碳的生活理念,租用公共自行车骑行的人越来越多.某种公共自行车的租用收费标准为:每次租车不超过1小时免费,超过1小时的部分每小时收费2元(不足1小时的部分按1小时计算).甲、乙两人相互独立来租车,每人各租1辆且租用1次.设甲、乙不超过1小时还车的概率分别为和;1小时以上且不超过2小时还车的概率分别为和;两人租车时间都不会超过3小时. (1) 求甲、乙两人所付租车费用相同的概率; (2) 记甲、乙两人所付的租车费用之和为随机变量,求的分布列和数学期望.
|
10. 难度:中等 | |
甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局. (1)若在一局中甲先摸,求甲在该局获胜的概率; (2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X的概率分布及数学期望.
|
11. 难度:中等 | |
如图是一旅游景区供游客行走的路线图,假设从进口开始到出口,每遇到一个岔路口,每位游客选择其中一条道路行进是等可能的.现有甲、乙、丙、丁共名游客结伴到旅游景区游玩,他们从进口的岔路口就开始选择道路自行游玩,并按箭头所指路线行走,最后到出口集中,设点是其中的一个交叉路口点. (1)求甲经过点的概率; (2)设这名游客中恰有名游客都是经过点,求随机变量的概率分布和数学期望.
|
12. 难度:中等 | |
某公司的一次招聘中,应聘者都要经过三个独立项目,,的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过,,每个项目测试的概率都是. (1)求甲恰好通过两个项目测试的概率; (2)设甲、乙、丙三人中被录用的人数为,求的概率分布和数学期望.
|
13. 难度:中等 | |
已知知正四棱锥S-ABCD的底面边长和高均为2,从其五个顶点中任取三个,记这三个顶点围成的三角形的面积为. (1)求概率P(=2); (2)求的分布列和数学期望.
|
14. 难度:中等 | |
从批量较大的产品中随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量表示这10件产品中的不合格产品的件数. (1)问:这10件产品中“恰好有2件不合格的概率”和“恰好有3件不合格的概率”哪个大?请说明理由; (2)求随机变量的数学期望.
|
15. 难度:中等 | |
“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y. (1)求X为“回文数”的概率; (2)设随机变量
|
16. 难度:中等 | |
从批量较大的产品中随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量表示这10件产品中的不合格产品的件数. (1)问:这10件产品中“恰好有2件不合格的概率”和“恰好有3件不合格的概率”哪个大?请说明理由; (2)求随机变量的数学期望.
|
17. 难度:中等 | |
某公司有四辆汽车,其中车的车牌尾号为0,两辆车的车牌尾号为6,车的车牌尾号为5,已知在非限行日,每辆车都有可能出车或不出车.已知两辆汽车每天出车的概率为,两辆汽车每天出车的概率为,且四辆汽车是否出车是相互独立的. 该公司所在地区汽车限行规定如下: (1)求该公司在星期四至少有2辆汽车出车的概率; (2)设表示该公司在星期一和星期二两天出车的车辆数之和,求的分布列和数学期望.
|
18. 难度:中等 | |
现有一款智能学习APP,学习内容包含文章学习和视频学习两类,且这两类学习互不影响.已知该APP积分规则如下:每阅读一篇文章积1分,每日上限积5分;观看视频累计3分钟积2分,每日上限积6分.经过抽样统计发现,文章学习积分的概率分布表如表1所示,视频学习积分的概率分布表如表2所示. (1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率; (2)现随机抽取3人了解学习情况,设积分不低于9分的人数为
|
19. 难度:中等 | |
在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的33表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X元. (1)求概率; (2)求的概率分布及数学期望.
|
20. 难度:中等 | |
某种质地均匀的正四面体玩具的4个面上分别标有数字0,1,2,3,将这个玩具抛掷次,记第次抛掷后玩具与桌面接触的面上所标的数字为,数列的前和为.记是3的倍数的概率为. (1)求,; (2)求.
|
21. 难度:中等 | |
甲,乙两人站在点处分别向,,三个目标进行射击,每人向三个目标各射击一次,每人每次射击每个目标均相互独立,且两人各自击中,,的概率分别都为,,. (1)设表示甲击中目标的个数,求随机变量的分布列和数学期望; (2)求甲乙两人共击中目标数为2个的概率.
|
22. 难度:中等 | |||||||||||
甲、乙、丙三位学生各自独立地解同一道题,已知甲做对该题的概率为,乙、丙做对该题的概率分别为,且三位学生能否做对相互独立,设为这三位学生中做对该题的人数,其分布列为:
(1)求的值; (2)求的数学期望.
|
23. 难度:中等 | |||||
将4本不同的书随机放入如图所示的编号为1,2,3,4的四个抽屉中.
(Ⅰ)求4本书恰好放在四个不同抽屉中的概率; (Ⅱ)随机变量表示放在2号抽屉中书的本数,求的分布列和数学期望.
|
24. 难度:中等 | |
袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球. (Ⅰ)若两个球颜色不同,求不同取法的种数; (Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.
|
25. 难度:中等 | |
已知正四棱锥的侧棱和底面边长相等,在这个正四棱锥的条棱中任取两条,按下列方式定义随机变量的值: 若这两条棱所在的直线相交,则的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则; 若这两条棱所在的直线异面,则的值是这两条棱所在直线所成角的大小(弧度制). (1)求的值; (2)求随机变量的分布列及数学期望.
|
26. 难度:中等 | |
某学生参加4门学科的学业水平测试,每门得等级的概率都是,该学生各学科等级成绩彼此独立.规定:有一门学科获等级加1分,有两门学科获等级加2分,有三门学科获等级加3分,四门学科全获等级则加5分,记表示该生的加分数,表示该生获等级的学科门数与未获等级学科门数的差的绝对值. (1)求的数学期望; (2)求的分布列.
|
27. 难度:中等 | |
扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所. (1)求6名大学生中至少有1名被分配到甲学校实习的概率; (2)设,分别表示分配到甲、乙两所中学的大学生人数,记,求随机变量的分布列和数学期望.
|