1. 难度:简单 | |
一个口袋内装有1个白球和编号分别为的3个黑球,它们的大小、质地相同,从中任意摸出2个球. (1)写出这个试验的样本空间,并判断这个试验是否为古典概型; (2)“摸出的2个球都是黑球”记为事件,用集合表示事件.
|
2. 难度:简单 | |
甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( ) A. B. C. D.
|
3. 难度:简单 | |
某大学餐饮中心为了解新生的饮食习惯,在全校大一新生中进行了抽样调查.已知在被调查的新生中有5名数学系的学生,其中2名喜欢甜品.现在从这5名学生中随机抽取3人,则至多有1人喜欢甜品的概率为( ) A. B. C. D.
|
4. 难度:简单 | |
先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为,则的概率为 ( ) A. B. C. D.
|
5. 难度:中等 | |
一个三位自然数百位,十位,个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若,且a,b,c互不相同,则这个三位数为”有缘数”的概率是__________.
|
6. 难度:简单 | |
从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件, 每次取出后不放回,连续取两次. (1)求取出的两件产品中恰有一件次品的概率; (2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?
|
7. 难度:简单 | |
甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 ( ) A. B. C. D.
|
8. 难度:简单 | |
从集合的所有子集中,任取一个,这个集合恰是集合子集的概率是( ) A. B. C. D.
|
9. 难度:简单 | |
甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A. B. C. D.
|
10. 难度:简单 | |
把一颗骰子投掷两次,观察出现的点数,记第一次出现的点数为,第二次出现的点数为,则方程组只有一个解的概率为 ( ) A. B. C. D.
|
11. 难度:简单 | |||||||||||
从一批苹果中随机抽取50个,其质量(单位:)的频数分布表如下:
用分层随机抽样的方法从质量在和内的苹果中共抽取4个,再从抽取的4个苹果中任取2个,则有1个苹果的质量在内的概率为( ) A. B. C. D.
|
12. 难度:简单 | |
已知关的一元二次函数,设集合,分别从集合和中随机取一个数和得到数对.(1)列举出所有的数对并求函数有零点的概率;(2)求函数在区间上是增函数的概率.
|
13. 难度:中等 | |
在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱. (1)摸出的3个球为白球的概率是多少? (2)摸出的3个球为2个黄球1个白球的概率是多少? (3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
|