1. 难度:简单 | |
设集合,,则( ) A. B. C. D.
|
2. 难度:简单 | |
函数定义域为( ) A. B. C. D.
|
3. 难度:简单 | |
若函数满足,则( ) A. B. C. D.1
|
4. 难度:中等 | |
幂函数在上是减函数,则( ) A. B. C. D.
|
5. 难度:中等 | |
若函数的图象关于直线对称,则( ) A. B. C. D.
|
6. 难度:简单 | |
若函数在上是增函数,则实数的取值范围是( ) A. B. C. D.
|
7. 难度:简单 | |
若函数的零点为,则属于( ) A. B. C. D.
|
8. 难度:简单 | |
若,则的大小关系为( ) A. B. C. D.
|
9. 难度:简单 | |
函数的值域为( ) A. B. C. D.
|
10. 难度:中等 | |
若函数是奇函数,且在定义域上是减函数,,则满足的实数的取值范围是( ) A. B. C. D.
|
11. 难度:中等 | |
若函数的图象过定点,则不等式的解集为( ) A. B. C. D.
|
12. 难度:中等 | |
已知函数,若,则的取值范围是( ) A. B. C. D.
|
13. 难度:简单 | |
设集合,若,则实数的最小值是______.
|
14. 难度:简单 | |
若反比例函数的图象过点,则函数在区间上的值域为 _______ .
|
15. 难度:简单 | |
若,则=__________.
|
16. 难度:中等 | |
已知函数,若函数有3个零点,则实数的取值范围是________.
|
17. 难度:中等 | |
计算: (1); (2).
|
18. 难度:中等 | |
若函数. (1)求函数的定义域,并判断函数的奇偶性; (2)求函数的最大值.
|
19. 难度:中等 | |
已知函数. (1)若,求的值; (2)写出函数的单调区间,不必说明理由; (3)若,求实数的取值范围.
|
20. 难度:中等 | |
技术员小张对甲、乙两项工作投入时间(小时)与做这两项工作所得报酬(百元)的关系式为:,若这两项工作投入的总时间为120小时,且每项工作至少投入20小时. (1)试建立小张所得总报酬(单位:百元)与对乙项工作投入的时间(单位:小时)的函数关系式,并指明函数定义域; (2)小张如何计划使用时间,才能使所得报酬最高?
|
21. 难度:中等 | |
已知函数在区间上的最大值为2. (1)求实数的值; (2)若,求实数的取值范围.
|
22. 难度:困难 | |
已知函数. (1)若对任意实数都成立,求实数的取值范围; (2)若关于的方程有两个实数解,求实数的取值范围.
|