相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
湖北省随州市2019-2020学年高二上学期期末数学试卷
一、单选题
详细信息
1. 难度:简单

直线的倾斜角为(   

A.30° B.60° C.120° D.150°

 

详细信息
2. 难度:简单

数列2的一个通项公式an等于(    

A. B. C. D.

 

详细信息
3. 难度:简单

抛物线的焦点到准线的距离是(   

A. B. C.4 D.8

 

详细信息
4. 难度:简单

为平面外的一条直线,的方向向量为的法向量为,则对于下列结论,各选项说法正确的为(   

①若,则;②若,则;③设所成的角为,则

A.只有①正确 B.只有②③正确 C.只有①③正确 D.①②③都正确

 

详细信息
5. 难度:简单

已知双曲线C)的离心率为,则C的渐近线方程为(   

A. B. C. D.

 

详细信息
6. 难度:简单

已知数列中,,则等于(   

A. B. C. D.

 

详细信息
7. 难度:简单

,则方程所表示的曲线一定不会是(   

A.直线

B.焦点在x轴上的椭圆

C.焦点在y轴上的椭圆

D.双曲线

 

详细信息
8. 难度:简单

如图,空间四边形OABC中,,且,则等于(     )

A.  B.

C.  D.

 

详细信息
9. 难度:中等

古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数k)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点AB间的距离为2,动点P满足,则的最大值为(   

A. B. C. D.

 

详细信息
10. 难度:中等

有两个等差数列26101902814200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的项数为(   

A.15 B.16 C.17 D.18

 

详细信息
11. 难度:困难

椭圆与双曲线共焦点,它们的交点对两公共焦点的张角为,椭圆与双曲线的离心率分别为,则(     )

A.  B.

C.  D.

 

详细信息
12. 难度:困难

棋盘上标有第012...100站,棋子开始位于第0站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子位于第n站的概率为,设.则下列结论正确的有(   

②数列)是公比为的等比数列;

A.1 B.2 C.3 D.4

 

二、填空题
详细信息
13. 难度:简单

设等差数列的前n项和为,若,则的公差为______

 

详细信息
14. 难度:中等

已知直线l与曲线有两个不同的公共点,则实数m的取值范围是______

 

详细信息
15. 难度:中等

下表中的数阵为森德拉姆数筛,其特点是每行每列都成等差数列,记第i行第j列的数为,则______,表中的数2021共出现______次.

 

详细信息
16. 难度:中等

若椭圆)与椭圆)的焦距相等,给出如下四个结论:

一定有交点;

②若,则

③若,则

④设在第一象限内相交于点,若,则

其中,所有正确结论的序号是______

 

三、解答题
详细信息
17. 难度:中等

已知数列的前n项和为,且.             

1)求数列的通项.

2)设,求数列的前n项和.

 

详细信息
18. 难度:中等

已知的顶点边上的中线所在直线方程为 边上 的高,所在直线方程为.

(1)求顶点 的坐标;

(2)求直线的方程.

 

详细信息
19. 难度:简单

某学习软件以数学知识为题目设置了一项闯关游戏,共有15关,每过一关可以得到一定的积分,现有三种积分方案供闯关者选择.方案一:每闯过一关均可获得40积分;方案二:闯过第一关可获得5积分,后面每关的积分都比前一关多5;方案三:闯过第一关可获得0.5积分,后面每关的积分都是前一关积分的2.若某关闯关失败则停止游戏,最终积分为闯过的各关的积分之和,设三种方案闯过n)关后的积分之和分别为,要求闯关者在开始前要选择积分方案.

1)求出的表达式;

2)为获得尽量多的积分,如果你是一个闯关者,试分析这几种积分方案该如何选择?小明通过试验后觉得自己至少能闯过12关,则他应该选择第几种积分方案?

 

详细信息
20. 难度:中等

如图,在四棱锥中,底面ABCD,底面ABCD为梯形,,且

1)在PD上是否存在一点F,使得平面PAB,若存在,找出F的位置,若不存在,请说明理由;

2)求二面角的大小.

 

详细信息
21. 难度:中等

中,两直角边ABAC的长分别为mn(其中),以BC的中点O为圆心,作半径为r)的圆O

1)若圆O的三边共有4个交点,求r的取值范围;

2)设圆O与边BC交于PQ两点;当r变化时,甲乙两位同学均证明出为定值甲同学的方法为:连接APAQAO,利用两个小三角形中的余弦定理来推导;乙同学的方法为;以O为原点建立合适的直角坐标系,利用坐标法来计算.请在甲乙两位同学的方法中选择一种来证明该结论,定值用含mn的式子表示.(若用两种方法,按第一种方法给分)

 

详细信息
22. 难度:困难

椭圆C)的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆C截得的线段长为3

1)求椭圆C的方程;

2)点P是椭圆C上除长轴端点外的任一点,连接,设的角平分线PMC的长轴于点,求m的取值范围;

3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点设直线的斜率分别为,若,试证明为定值,并求出这个定值.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.