1. 难度:简单 | |
已知集合,,则 A. B. C. D.
|
2. 难度:简单 | |
在复平面内,复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
|
3. 难度:简单 | |
双曲线的渐近线方程为( ) A. B. C. D.
|
4. 难度:简单 | |
在等差数列中,,,则( ) A. B. C. D.
|
5. 难度:简单 | |
如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是( ) A.回答该问卷的总人数不可能是100个 B.回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多 C.回答该问卷的受访者中,选择“学校团委会宣传”的人数最少 D.回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8个
|
6. 难度:简单 | |
若,则“”是“”的 A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件
|
7. 难度:简单 | |
如图,网格纸的小正方形的边长是1,在其上用粗实线和粗虚线画出了某几何体的三视图,图中的曲线为半圆弧或圆,则该几何体的体积是( ) A. B. C. D.
|
8. 难度:中等 | |
已知函数,则下列结论不正确的是( ) A.的最大值为2 B.的最小正周期为 C.的图像关于直线对称 D.的图像关于点对称
|
9. 难度:中等 | |
若正四棱柱的体积为,,则直线与所成的角为( ) A. B. C. D.
|
10. 难度:中等 | |
已知函数,若,则实数的取值范围是( ) A. B. C. D.
|
11. 难度:中等 | |
《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝桠不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情,跃然于绢素之上.甲、乙、丙、丁四人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶四个动作,四人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲不模仿“爬”且乙不模仿“扶”的概率是( ) A. B. C. D.
|
12. 难度:中等 | |
若直线y=a分别与直线y=2x-3,曲线y=ex-x(x≥0)交于点A,B,则|AB|的最小值为( ) A. B. C.e D.
|
13. 难度:简单 | |
向量,满足,,则=______.
|
14. 难度:中等 | |
若满足约束条件,则的最大值是_____.
|
15. 难度:简单 | |
若数列满足,,则_____.
|
16. 难度:困难 | |
已知点为椭圆的左焦点,直线与相交于两点(其中在第一象限),若,,则的离心率的最大值是____.
|
17. 难度:中等 | |
已知锐角的内角的对边分别为,且. (1)求; (2)若,,求.
|
18. 难度:中等 | |
如图,菱形中,,,是的中点,以为折痕,将折起,使点到达点的位置,且平面平面, (1)求证:; (2)若为的中点,求四面体的体积.
|
19. 难度:简单 | |||||||||||||
某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动、活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为元,若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取名,每名用户赠送元的红包,为了合理确定保费的值,该手机厂商进行了问卷调查,统计后得到下表(其中表示保费为元时愿意购买该“手机碎屏险”的用户比例); (1)根据上面的数据求出关于的回归直线方程; (2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为.已知更换一次该型号手机屏幕的费用为元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于万元,能否把保费定为5元?
参考公式:回归方程中斜率和截距的最小二乘估计分别为, , 参考数据:表中的5个值从左到右分别记为,相应的值分别记为,经计算有,其中,.
|
20. 难度:中等 | |
已知离心率为的椭圆的右焦点与抛物线的焦点重合,且点到的准线的距离为2. (1)求的方程; (2)若直线与交于两点,与交于两点,且(为坐标原点),求面积的最大值.
|
21. 难度:中等 | |
已知函数. (1)若,求的单调区间; (2)若,求的取值范围.
|
22. 难度:简单 | |
在直角坐标系中,曲线的参数方程为(为参数,且,),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为, (1)求的普通方程和的直角坐标方程; (2)若与的交点为,且,求.
|
23. 难度:简单 | |
函数. (1)当时,求不等式的解集; (2)若不等式的解集为空集,求的取值范围.
|