相关试卷
当前位置:首页 > 高中数学试卷 > 试卷信息
2019届湖北省武汉市高三上学期期末数学(理)试卷
一、单选题
详细信息
1. 难度:简单

已知全集U=R,集合,则AUB=   

A. B. C. D.

 

详细信息
2. 难度:简单

若复数满足,则的共轭复数的虚部是( )

A. B. C. D.

 

详细信息
3. 难度:简单

已知条件关于的不等式有解;条件为减函数,则成立是成立的(     )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

 

详细信息
4. 难度:简单

已知函数fx,若角的终边经过点,则的值为(   

A.1 B.3 C.4 D.9

 

详细信息
5. 难度:中等

是等差数列的前项和,其首项 ,则使成立的最大自然数是(   

A.198 B.199 C.200 D.201

 

详细信息
6. 难度:中等

设双曲线)的渐近线与抛物线相切,则该双曲线的离心率等于(   )

A. B. C. D.

 

详细信息
7. 难度:简单

某产品的广告费用万元与销售额万元的统计数据如表:

广告费用

2

3

4

5

销售额

26

39

49

54

 

根据上表可得回归方程,据此模型预测,广告费用为6万元时的销售额为(   )万元

A. 65.5 B. 66.6 C. 67.7 D. 72

 

详细信息
8. 难度:中等

已知P是ABC所在平面内﹣点,,现将一粒黄豆随机撒在ABC内,则黄豆落在PBC内的概率是(  )

A. B. C. D.

 

详细信息
9. 难度:中等

某几何体的三视图如图所示,则该几何体的体积是(  )

A. B. C. D.

 

详细信息
10. 难度:中等

过函数图象上一个动点作函数的切线,则切线倾斜角的范围为(   )

A. B. C. D.

 

详细信息
11. 难度:中等

已知椭圆和双曲线有共同焦点是它们的一个交点,,记椭圆和双曲线的离心率分别,则的最小值是(   

A.1 B. C. D.3

 

详细信息
12. 难度:中等

已知函数,若方程有四个不等实根,时,不等式恒成立,则实数的最小值为()

A.  B.  C.  D.

 

二、填空题
详细信息
13. 难度:简单

已知实数满足,则的最小值为       

 

详细信息
14. 难度:简单

已知,则二项式的展开式中的系数为_______.

 

详细信息
15. 难度:简单

名志愿者中选出人,分别参加两项公益活动,每项活动至少有人,则不同安排方案的种数为_______.(用数字作答)

 

详细信息
16. 难度:简单

已知是定义在上的不恒为零的函数,且对于任意的,满足(),().考查下列结论:①;②为偶函数;③数列为等差数列;④数列为等比数列.其中正确的是_______.

 

三、解答题
详细信息
17. 难度:中等

中,角的对边分别是,若成等差数列.

(1)求

(2)若,求的面积.

 

详细信息
18. 难度:简单

如图1,过动点,垂足在线段上且异于点,连接,沿折起,使(如图2所示),

1)当的长为多少时,三棱锥的体积最大;

2)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.

 

详细信息
19. 难度:中等

分别是椭圆的左、右焦点.

(1)若是该椭圆上的一个动点,求的最大值和最小值;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

 

详细信息
20. 难度:中等

2018年国际乒联总决赛在韩国仁川举行,比赛时间为12131216日,在男子单打项目,中国队准备选派4人参加.已知国家一线队共6名队员,二线队共4名队员.

1)求恰好有3名国家一线队队员参加比赛的概率;

2)设随机变量X表示参加比赛的国家二线队队员的人数,求X的分布列;

3)男子单打决赛是林高远(中国)对阵张本智和(日本),比赛采用七局四胜制,已知在每局比赛中,林高远获胜的概率为,张本智和获胜的概率为,前两局比赛双方各胜一局,且各局比赛的结果相互独立,求林高远获得男子单打冠军的概率.

 

详细信息
21. 难度:中等

已知函数.

1)当,求函数的极值;

2)当时,在函数图象上任取两点,若直线的斜率的绝对值都不小于,求的取值范围.

 

详细信息
22. 难度:中等

在平面直角坐标系中,直线l的参数方程为 (t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若直线l与曲线C相交于AB两点,求△AOB的面积.

 

详细信息
23. 难度:中等

已知函数f(x)=|xa|-x(a>0).

(1)若a=3,解关于x的不等式f(x)<0;

(2)若对于任意的实数x,不等式f(x)-f(xa)<a2恒成立,求实数a的取值范围.

 

Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.