1. 难度:简单 | |
(2012年2月济南检测)在奥运比赛项目中,高台跳水是我国运动员的强项。质量为m的跳水运动员入水后受到水的阻力而竖直向下做减速运动,设水对他的阻力大小恒为F。那么在他减速下降深度为h的过程中,下列说法正确的是(g为当地的重力加速度) A.他的动能减少了Fh B.他的重力势能减少了mgh C.他的动能减少了(F-mg)h D.他的机械能减少了Fh
|
2. 难度:简单 | |
(2012年开封二模)如图所示,用一轻绳系一小球悬于O点。现将小球拉至水平位置,然后释放,不计阻力。小球下落到最低点的过程中,下列表述正确的是 A. 小球的机械能守恒; B. 小球所受的合力不变; C. 小球的动能不断减小; D. 小球的重力势能增加
|
3. 难度:简单 | |
(2012年2月西安五校联考)如图甲所示,足够长的固定粗糙细杆与地面成一定倾角,在杆上套有一个小环,沿杆方向给环施加一个拉力F,使环由静止开始运动,已知拉力F及小环速度v随时间t变化的规律如图乙所示,重力加速度g取10 m/s2.则以下判断正确的是 ( ) A.小环的质量是1kg B.动摩擦因数为0.25 C.0.5s末拉力F的功率是1.25W D.前3 s内小环机械能的增加量是5.75J
|
4. 难度:简单 | |
(2012年2月西安五校联考)如图所示,置于足够长斜面上的盒子A内放有光滑球B,B恰与A前、后壁接触,斜面光滑且固定于水平地面上。一轻质弹簧的一端与固定在斜面上的木板P拴接,另一端与A相连。今用外力推A使弹簧处于压缩状态,然后由静止释放,则从释放盒子直至其获得最大速度的过程中( ) A.弹簧弹性势能的减少量等于A和B的机械能的增加量 B.弹簧的弹性势能一直减小直至为零 C.A所受重力和弹簧弹力做功的代数和小于A的动能的增加量 D.A对B做的功等于B的机械能的增加量
|
5. 难度:简单 | |
(2012年2月山东潍坊重点中学联考)一吊篮悬挂在绳索的下端放在地面上,某人站在高处将吊篮由静止开始竖直向上提起.运动过程中,吊篮的机械能与位移的关系如右图所示,其中0~x1段图象为直线,x1~x2段图象为曲线,x2~x3段图象为水平直线,则下列说法正确的是 A.在0~x1过程中,吊篮所受拉力均匀增大 B.在0~x1过程中,吊篮的动能不断增大 C.吊篮在x2处的动能可能小于x1处的动能 D.在x2~x3过程中, 吊篮受到的拉力等于重力
|
6. 难度:简单 | |
(2012年2月武汉调研)在竖直平面内,一根光滑金属杆弯成图示形状,相应的曲线方程为y=2.5cos(kx+)(单位:m),式中k=1m-1。将一光滑小环套在该金属杆上,并从x=0处以v0=5m/s的初速度沿杆向下运动,取重力加速度g=10m/s2,下列说法正确的是
A.小环沿金属杆运动过程中,机械能不守恒 B.小环运动到x=π/2 m时的速度大小是5m/s C.小环运动到x=π/2 m时的速度大小是5m/s D.小环运动到x=π/2 m时的速度大小是5m/s
|
7. 难度:简单 | |
(2012年2月济南检测)如图所示,两个3/4竖直圆弧轨道固定在同一水平地面上,半径R相同,左侧轨道由金属凹槽制成,右侧轨道由金属圆管制成,均可视为光滑。在两轨道右侧的正上方分别将金属小球A和B由静止释放,小球距离地面的高度分别为hA和hB,下列说法正确的是 A.若使小球A沿轨道运动并且从最高点飞出,释放的最小高度为5R/2 B.若使小球B沿轨道运动并且从最高点飞出,释放的最小高度为5R/2 C.适当调整hA,可使A球从轨道最高点飞出后,恰好落在轨道右端口处 D.适当调整hB,可使B球从轨道最高点飞出后,恰好落在轨道右端口处
|
8. 难度:简单 | |
(2012年2月洛阳五校联考)如图所示,ABCD是一段竖直平面内的光滑轨道, AB段与水平面成α角,CD段与水平面成β角,其中BC段水平,且其长度大于L。现有两小球P、Q,质量分别是2m、m,用一长为L的轻质直杆连结,将P、Q由静止从高H处释放,在轨道转折处用光滑小圆弧连接,不考虑两小球在轨道转折处的能量损失。则小球P滑上CD轨道的最大高度h为 ( ) A.h=H B. C.h=H-Lsinβ D.
|
9. 难度:简单 | |
(6分)(2012年2月济南检测)右图是一位同学做“探究动能定理”的实验装置图。 (1)让一重物拉着一条纸带自由下落,通过打点计时器在纸带上打点,然后取纸带的一段进行研究。该同学测定重力做功和物体动能的增加量时,需要用刻度尺测量这一段的 ,并计算重物在这一段运动的初速度和末速度。 (2)该同学计算了多组动能的变化量△Ek,画出动能的变化量△Ek与下落的对应高度h的关系图象,在实验误差允许的范围内,得到的△Ek-h图应是如下的 图。
|
10. 难度:简单 | |
(2012年2月江苏重点中学联考)某研究性学习小组利用气垫导轨验证机械能守恒定律,实验装置如图甲所示。在气垫导轨上相隔一定距离的两处安装两个光电传感器A、B,滑块P上固定一遮光条,若光线被遮光条遮挡,光电传感器会输出高电压,两光电传感器采集数据后与计算机相连。滑块在细线的牵引下向左加速运动,遮光条经过光电传感器A、B时,通过计算机可以得到如图乙所示的电压U随时间t变化的图象。 ⑴实验前,接通气源,将滑块(不挂钩码)置于气垫导轨上,轻推滑块,当图乙中的Δt1 Δt2(选填“>”、“=”或“<” )时,说明气垫导轨已经水平。 ⑵用螺旋测微器测遮光条宽度d,测量结果如图丙所示,则d = mm。 ⑶滑块P用细线跨过气垫导轨左端的定滑轮与质量为m的钩码Q相连,将滑块P由图甲所示位置释放,通过计算机得到的图象如图乙所示,若Δt1、Δt2和d已知,要验证滑块和砝码组成的系统机械能是否守恒,还应测出 和 (写出物理量的名称及符号)。 ⑷若上述物理量间满足关系式 ,则表明在上述过程中,滑块和砝码组成的系统机械能守恒。
|
11. 难度:简单 | |
(2012年2月重庆八中检测)如图所示,可视为质点的总质量(包括装备)为m=60kg的滑板运动员,从高为H=15m的斜面AB的顶端A点由静止开始沿斜面下滑,在点进入光滑的四分之一圆弧BC,圆弧BC半径为R=5m,运动员经C点沿竖直轨道冲出向上运动,经时间t=2s后又落回轨道。若运动员经C点后在空中运动时只受重力,轨道AB段粗糙、BC段光滑。g=10m/s2。 求:(1)运动员在C点的速度和离开C点可上升的高度。 (2)运动员(包括装备)运动到圆轨道最低点B时对轨道的压力大小。 (3)从A点到B点,运动员损失的机械能。
|
12. 难度:简单 | |
(2012年2月济南检测)如图所示,在光滑水平地面上放置质量M=2kg的长木板,木板上表面与固定的竖直弧形轨道相切。一质量m=1kg的小滑块自A点沿弧面由静止滑下,A点距离长木板上表面高度h=0.6m。滑块在木板上滑行t=1s后,和木板以共同速度v =1m/s匀速运动,取g=10m/s2。求: (1) 滑块与木板间的摩擦力 (2) 滑块沿弧面下滑过程中克服摩擦力做的功 (3) 滑块相对木板滑行的距离
|
13. 难度:简单 | |
如图所示,一小球从A点以某一水平向右的初速度出发,沿水平直线轨道运动到B点后,进入半径R=10cm的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C点运动,C点右侧有一壕沟,C、D两点的竖直高度h=0.8m,水平距离s=1.2m,水平轨道AB长为L1=1m,BC长为L2=3m,.小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=10m/s2,则: (1)若小球恰能通过圆形轨道的最高点,求小球在A点的初速度? (2)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球在A点的初速度的范围是多少?
|