1. 难度:简单 | |
关于物理规律的实际应用,下列说法不正确的是 A.运动鞋胶底凹凸不平是为了增大与地面间的摩擦 B.汽车上坡时,驾驶员换挡减速是为了增大汽车牵引力 C.地质工作者利用地面重力加速度的变化了解地质构造的信息 D.飞机在空中水平盘旋,利用重力提供向心力
|
2. 难度:简单 | |
在如图所示的电路中,Rt为半导体热敏电阻,闭合开关,灯泡L1、L2、L3的亮度相同.当Rt处的温度升高时,小灯泡的亮度变化情况是 A.L1变亮,L2变暗,L3变亮 B.L1变暗,L2变亮,L3变暗 C.L1、L2变亮, L3变暗 D.L1、L2变暗, L3变亮
|
3. 难度:简单 | |
如图所示,一根不可伸长的细绳两端分别连接在框架上的A、B两点,细绳绕过光滑的滑轮,重物悬挂于滑轮下,处于静止状态.若缓慢移动细绳的两端,则绳中拉力大小变化的情况是
A.只将绳的左端移向A′点,拉力变小 B.只将绳的左端移向A′点,拉力不变 C.只将绳的右端移向B′点,拉力变小 D.只将绳的右端移向B′点,拉力不变
|
4. 难度:简单 | |
如图所示,一木块在水平拉力F1作用下沿水平地面做匀速直线运动,受到的摩擦力为f1,在移动距离l的过程中,拉力F1做的功为W1.若改用另一斜向上的拉力F2,使木块沿地面也做匀速直线运动,受到的摩擦力为f1,在移动距离l的过程中,拉力F2做的功为W2.则 A.f1<f2 B.f1=f2 C.W1>W2 D.W1=W2
|
5. 难度:简单 | |
均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB上均匀分布正电荷,总电荷量为q,球面半径为R,CD为通过半球顶点与球心O的轴线,在轴线上有M、N两点,OM=ON=2R.已知M点的场强大小为E,则N点的场强大小为 A. B. C. D.
|
6. 难度:简单 | |
在图甲所示电路中,流过二极管D的电流iD如图乙所示,该电流可以看作是一个恒定电流和一个交变电流的叠加,流过电感和电容的电流分别为iL、iC.下列关于iL、iC随时间t变化的图象中,可能正确的是
|
7. 难度:简单 | |
甲、乙两物体从地面同时竖直向上运动,甲做竖直上抛运动,乙做加速度大小逐渐减小的减速运动,它们同时到达同一最大高度.则在开始运动时 A.甲的加速度大于乙的加速度 B.乙的加速度大于甲的加速度 C.甲的速度大于乙的速度 D.乙的速度大于甲的速度
|
8. 难度:简单 | |
2011年诺贝尔物理奖授予佩尔马特等三位科学家,他们的获奖工作是“通过观测遥远的超新星,发现宇宙正在加速膨胀”.物理学家为了解释这一现象,提出了“暗能量”的概念.正是在暗能量的驱动下,宇宙出现了加速膨胀.宇宙中暗能量约占73%、约有23%是暗物质,我们能看到的、接触到的普通物质约占4%.暗能量和暗物质实质至今尚未清楚,但科学家找到了暗物质存在的间接证据,大型星系团中的星系具有极高的运动速度,星系团要束缚住这些星系,它的质量应该是我们观测到质量的100倍以上,大量的观测分析证实了这一点. 关于上述事实及理论假说,下列结论你认为可能正确的是 A.暗能量力的作用表现为斥力 B.暗物质力的作用表现为引力 C.从太阳系行星运动与星系团中的星系运动比较可知,宇宙中暗物质分布是均匀的 D.从太阳系行星运动与宇宙正在加速膨胀比较可知,宇宙中暗能量分布是不均匀的
|
9. 难度:简单 | |
如图所示,两金属板间有水平方向的匀强磁场和竖直向下的匀强电场.一带正电的小球垂直于电场和磁场方向从O点以速度v0飞入此区域,恰好能沿直线从P点飞出此区域.如果只将电场方向改为竖直向上,则小球做匀速圆周运动,加速度大小为a1,经时间t1从板间的右端a点飞出,a与P间的距离为y1;如果同时撤去电场和磁场,小球加速度大小为a2,经时间t2从板间的右端b点以速度v飞出,b与P间的距离为y2.a、b两点在图中未标出,则 A.v0< v B.a1<a2 C.y1>y2 D.t1<t2
|
10. 难度:简单 | |
(1)如图甲所示,螺旋测微器读数是 mm;如图乙所示,游标卡尺读数是 cm.
(2)为验证小球在自由下落过程中机械能守恒,某实验小组进行了如下操作: 如图丙所示,竖直固定一刻度尺,小球最初停在O点,球底端和刻度尺“0”刻度线在同一水平线上.小球由静止开始下落,用频闪相机使底片每三十分之一秒曝光一次,得到小球运动的照片.选取OA过程验证小球机械能守恒. ① 小球运动经过A点时速度大小vA= m/s (结果保留两位有效数字) . ②下列操作中合理的是 . A.相同大小的橡胶球和铁球中,应选用铁球 B.A点的位置应离O点距离适当大些 C.小球的位置和下落的高度都必须以小球球心位置确定 D.验证机械能守恒就是比较小球O到A过程重力势能的减小和在A点动能是否相等,因此一定要测量小球的质量
|
11. 难度:简单 | |
某研究性学习小组为了制作一个传感器,需要选用某种电学元件.实验中首先要描绘该元件的伏安特性曲线,实验室备有下列器材: A.待测元件(额定电压2V、额定电流200mA) B.电流表A1(量程0~0.3A,内阻约为1Ω) C.电流表A2(量程0~0.6A,内阻约为0.5Ω) D.电压表V(量程0~3V,内阻约为10kΩ) E.滑动变阻器R1(阻值范围0~5Ω,允许最大电流1A) F.滑动变阻器R2(阻值范围0~1kΩ,允许最大电流100mA) G.直流电源E(输出电压3V,内阻不计) H.开关S,导线若干 I.多用电表 (1)为提高实验的准确程度,电流表应选用 ;滑动变阻器应选用 (以上均填器材代号). (2)请在图中用笔画线代替导线,完成实物电路的连接.
(3)检查实验电路连接正确,然后闭合开关,调节滑动变阻器滑动头,发现电流表和电压表指针始终不发生偏转.在不断开电路的情况下,检查电路故障,应该使用多用电表 挡;检查过程中将多用表的红、黑表笔与电流表“+”、“-”接线柱接触时,多用电表指针发生较大角度的偏转,说明电路故障是 .
|
12. 难度:简单 | |
页岩气是从页岩层中开采出来的天然气,主要成分为甲烷,被公认是洁净的能源. (1)一定质量的页岩气(可看作理想气体)状态发生了一次循环变化,其压强 p随热力学温度T变化的关系如图所示,O、a、b在同一直线上,bc与横轴平行.则 . A.a到b过程,气体的体积减小 B.a到b过程,气体的体积增大 C.b到c过程,气体从外界吸收热量 D.b到c过程,气体向外界放出热量 (2)将页岩气经压缩、冷却,在-160℃下液化成液化天然气(简称LNG).在液化天然气的表面层,其分子间的引力 (选填“大于”、“等于”或“小于”)斥力.在LNG罐内顶部存在一些页岩气,页岩气中甲烷分子的平均动能 (选填“大于”、“等于”或“小于”)液化天然气中甲烷分子的平均动能. (3)某状况下页岩气体积约为同质量液化天然气体积的600倍,已知液化天然气的密度,甲烷的摩尔质量,阿伏伽德罗常数,试估算该状态下6 .0m3的页岩气中甲烷分子数.
|
13. 难度:简单 | |
(1)下列说法中正确的是 . A.地震时释放的巨大能量引发海啸,能将震源附近的海水推到几千千米远的地方 B.载人飞船设计时需设法减少发射过程中与航天员身体固有频率相近的超低频振动 C.无线网络信号能绕过障碍物传递到接收终端是利用了干涉原理 D.立体放映机双镜头中的一个镜头发生故障时,观众戴着偏振光眼镜也能体验立体效果 (2)利用单摆测量某地的重力加速度,现测得摆球质量为m,摆长为L,通过传感器测出摆球运动时位移随时间变化的规律为,则该单摆的振动周期为 ,该处的重力加速度g= . (3)如图所示,等腰直角三角形ABC为一个三棱镜的截面,折射率为n(n>1.5),直角边AB的长为a.一束很细的单色光从AB中点垂直入射,光在真空中的传播速度为c,则该单色光通过三棱镜的时间为多少?
|
14. 难度:简单 | |
1930年泡利提出,在β衰变中除了电子外还会放出不带电且几乎没有静质量反中微子.氚是最简单的放射性原子核,衰变方程为,半衰期为12.5年. (1)下列说法中正确的是 . A.两个氚原子组成一个氚气分子,经过12.5年后,其中的一个氚核一定会发生衰变 B.夜光手表中指针处的氚气灯放出β射线撞击荧光物质发光,可以长时间正常工作 C.氚气在1大气压下,温度低于25.04K时可液化,液化后氚的衰变速度变慢 D.氚与氧反应生成的超重水没有放射性 (2)在某次实验中测得一静止的氚核发生β衰变后,的动量大小为p1,沿反方向运动的电子的动量大小为p2(p1< p2),则反中微子的动量大小为 .若、和的质量分别为m1、m2和m3,光在真空中的传播速度为c,则氚核β衰变释放的能量为 . (3)电子撞击一群处于基态的氢原子,氢原子激发后能放出6种不同频率的光子,氢原子的能级如图所示,则电子的动能至少为多大?
|
15. 难度:简单 | |
如图甲所示,一正方形单匝线框abcd放在光滑绝缘水平面上,线框边长为L、质量为m、电阻为R.该处空间存在一方向竖直向下的匀强磁场,其右边界MN平行于ab,磁感应强度B随时间t变化的规律如图乙所示,0~t0时间内B随时间t均匀变化,t0时间后保持B=B0不变. (1)若线框保持静止,则在时间t0内产生的焦耳热为多少? (2)若线框从零时刻起,在一水平拉力作用下由静止开始做匀加速直线运动,加速度大小为a,经过时间t0线框cd边刚要离开边界MN.则在此过程中拉力做的功为多少? (3)在(2)的情况下,为使线框在离开磁场的过程中,仍以加速度a做匀加速直线运动,试求线框在离开磁场的过程中水平拉力F随时间t的变化关系.
|
16. 难度:简单 | |
如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD的光滑,内圆A′B′C′D′的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg的小球从轨道的最低点A,以初速度v0向右运动,球的尺寸略小于两圆间距,球运动的半径R=0.2m,取g=10m/s2. (1)若要使小球始终紧贴外圆做完整的圆周运动,初速度v0至少为多少? (2)若v0=3m/s,经过一段时间小球到达最高点,内轨道对小球的支持力N=2N,则小球在这段时间内克服摩擦力做的功是多少? (3)若v0=3m/s,经过足够长的时间后,小球经过最低点A时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?
|
17. 难度:简单 | |
如图甲所示,空间Ⅰ区域存在方向垂直纸面向里的有界匀强磁场,左右边界线MN与PQ相互平行,MN右侧空间Ⅱ区域存在一周期性变化的匀强电场,方向沿纸面垂直MN边界,电场强度的变化规律如图乙所示(规定向左为电场的正方向).一质量为m、电荷量为+q的粒子,在t=0时刻从电场中A点由静止开始运动,粒子重力不计. (1)若场强大小E1=E2=E,A点到MN的距离为L,为使粒子进入磁场时速度最大,交变电场变化周期的最小值T0应为多少?粒子的最大速度v0为多大? (2)设磁场宽度为d,改变磁感应强度B的大小,使粒子以速度v1进入磁场后都能从磁场左边界PQ穿出,求磁感应强度B满足的条件及该粒子穿过磁场时间t的范围. (3)若电场的场强大小E1=2E0,E2=E0,电场变化周期为T,t=0时刻从电场中A点释放的粒子经过n个周期正好到达MN边界,假定磁场足够宽,粒子经过磁场偏转后又回到电场中,向右运动的最大距离和A点到MN的距离相等.求粒子到达MN时的速度大小v和匀强磁场的磁感应强度大小B.
|