1. 难度:中等 | |
已建成的广东大亚湾核电站利用的是( ) A.放射性元素发生α衰变放出的能量 B.放射性元素发生β衰变放出的能量 C.重核裂变放出的能量 D.热核反应放出的能量 |
2. 难度:中等 | |
在物理学发展的过程中,许多物理学家的科学研究推动了人类文明的进程.在对以下几位物理学家所做科学贡献的叙述中,正确的说法是( ) A.英国物理学家卡文迪许用实验的方法测出万有引力常量G B.牛顿应用“理想斜面实验”推翻了亚里士多德的“力是维持物体运动的原因”观点 C.胡克认为在弹性限度内,弹簧的弹力与弹簧的形变量成正比 D.亚里士多德认为两个从同一高度自由落下的物体,重物体与轻物体下落一样快 |
3. 难度:中等 | |
如图所示,轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小铁球,在电梯运行时,乘客发现弹簧的伸长量比电梯静止时的伸长量小,这一现象表明此过程中( ) A.电梯一定是在下降 B.电梯可能是在上升 C.乘客一定处在失重状态 D.电梯的加速度方向一定向上 |
4. 难度:中等 | |
一理想变压器原、副线圈匝数比n1:n2=11:5,原线圈与正弦交变电源连接,输入电压u随时间t的变化规律如图所示,副线圈仅接入一个10Ω 的电阻.则( ) A.流过电阻的最大电流是20A B.与电阻并联的电压表的示数是141V C.变压器的输入功率是1×103W D.在交变电流变化的一个周期内,电阻产生的焦耳热是2×103J |
5. 难度:中等 | |
我国未来将建立月球基地,并在绕月轨道上建造空间站.如图,关闭动力的航天飞机在月球引力作用下经椭圆轨道向月球靠近,并将与空间站B处对接.已知空间站绕月轨道半径为r,周期为T,万有引力常量为G,下列说法中正确的是( ) A.图中航天飞机在飞向B处的过程中,月球引力做正功 B.航天飞机在B处由椭圆轨道可直接进入空间站轨道 C.根据题中条件可以算出月球质量 D.根据题中条件可以算出空间站受到月球引力的大小 |
6. 难度:中等 | |
如图所示电路中,电源电动势为E,线圈L的直流电阻不计,以下判断正确的是( ) A.闭合S,稳定后,电容器两端电压为E B.闭合S,稳定后,电容器的a极带正电 C.断开S的瞬间,电容器的a极板将带正电 D.断开S的瞬间,电容器的a极板将带负电 |
7. 难度:中等 | |
农民在精选谷种时,常用一种叫“风车”的农具进行分选.在同一风力作用下,谷种和瘪谷(空壳)谷粒都从洞口水平飞出,结果谷种和瘪谷落地点不同,自然分开,如图所示.若不计空气阻力,对这一现象,下列分析正确的是( ) A.谷种飞出洞口时的速度比瘪谷飞出洞口时的速度大些 B.谷种和瘪谷飞出洞口后都做匀变速曲线运动 C.谷种和瘪谷从飞出洞口到落地的时间不相同 D.M处是谷种,N处为瘪谷 |
8. 难度:中等 | |
氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是( ) A.氢原子的能量增加 B.氢原子的能量减少 C.氢原子要吸收一定频率的光子 D.氢原子要放出一定频率的光子 |
9. 难度:中等 | |
如图所示,MN是一负点电荷产生的电场中的一条电场线.一个带正电的粒子(不计重力)从a到b穿越这条电场线的轨迹如图中虚线所示.下列结论正确的是( ) A.带电粒子从a到b过程中动能逐渐减小 B.负点电荷一定位于M点左侧 C.带电粒子在a点时具有的电势能大于在b点时具有的电势能 D.带电粒子在a点的加速度小于在b点的加速度 |
10. 难度:中等 | |
机车在平直轨道上做匀加速运动,假设运动中所受的阻力始终不变,下列说法正确的是( ) A.机车输出功率不变 B.机车输出功率逐渐减少 C.在任意两相等时间内,机车动能变化相等 D.在任意两相等时间内,机车动量变化相等 |
11. 难度:中等 | |
如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面的、电阻均匀的正方形导体框abcd,现将导体框分别朝两个方向以v、3v速度匀速拉出磁场,则导体框从两个方向移出磁场的两个过程中( ) A.导体框中产生的感应电流方向相同 B.导体框中产生的焦耳热相同 C.导体框ad边两端电势差相同 D.通过导体框截面的电量相同 |
12. 难度:中等 | |
如图所示,匀强磁场的方向竖直向下.磁场中有光滑的水平桌面,在桌面上平放着内壁光滑、底部有带电小球的试管.试管在水平拉力F作用下向右匀速运动,带电小球能从管口处飞出.关于带电小球及其在离开试管前的运动,下列说法中正确的是( ) A.小球带负电 B.洛伦兹力对小球做正功 C.小球运动的轨迹是一条抛物线 D.维持试管匀速运动的拉力F应增大 |
13. 难度:中等 | |
(1)蒸汽机、内燃机等热机以及电冰箱工作时都利用了气体状态变化来实现能量的转移和转化,我们把这些气体称为工质.某热机经过一个循环后,工质从高温热源吸热Q1,对外做功W,又对低温热源放热Q2,工质完全回复初始状态,内能没有变化.根据热力学第一定律,在工质的一个循环中,Q1、Q2、W三者之间满足的关系是 .热机的效率不可能达到100%,从能量转换的角度,说明 能不能完全转化为 能. (2)如图表示一定质量的某气体在不同温度下的两条等温线.图中等温线Ⅰ对应的温度比等温线Ⅱ对应的温度要 (填“高”或“低”).在同一等温线下,如果该气体的压强变为原来的2倍,则气体的体积应变为原来的 倍. |
14. 难度:中等 | |
(1)根据麦克斯韦电磁场理论,如果在空间某区域有周期性变化的电场,这个变化的电场就会在周围产生 .不同波段的电磁波具有不同的特性,如红外线具有明显的 效应,紫外线具有较强的 效应. (2)如图是一个单摆的共振曲线.此单摆的固有周期T是 S,若将此单摆的摆长增大,共振曲线的最大值将 (填“向左”或“向右”)移动. |
15. 难度:中等 | |||
某实验小组利用如图甲所示的实验装置来探究当合外力一定时,物体运动的加速度与其质量之间的关系. (1)由图甲中刻度尺读出两个光电门中心之间的距离s=24cm,由图乙中游标卡尺测得遮光条的宽度d=______cm.该实验小组在做实验时,将滑块从图甲所示位置由静止释放,由数字计时器可以读出遮光条通过光电门1的时间△t1,遮光条通过光电门2的时间△t2,则滑块经过光电门1时的瞬时速度的表达式v1=______,滑块经过光电门2时的瞬时速度的表达式v2=______,则滑块的加速度的表达式a=______ 2 -
|
16. 难度:中等 | |
某兴趣小组为了测量一待测电阻Rx的阻值,准备先用多用电表粗测出它的阻值,然后再用伏安法精确地测量,实验室里准备了以下器材: A.多用电表 B.电压表V1,量程6V,内阻约10kΩ C.电压表V2,量程15V,内阻约20kΩ D.电流表A1,量程0.6A,内阻约0.2Ω E.电流表A2,量程3A,内阻约0.02Ω F.电源:电动势E=6V G.滑动变阻器R1,最大阻值10Ω,最大电流2A H.导线、电键若干 (1)①在用多用电表粗测电阻时,该兴趣小组首先选用“×10”欧姆挡,其阻值如图甲中指针所示,为了减小多用电表的读数误差,多用电表的选择开关应换用 欧姆挡; ②按正确的操作程序再一次用多用电表测量该待测电阻的阻值时,其阻值如图乙中指针所示,则Rx的阻值大约是 Ω. (2)①在用伏安法测量该电阻的阻值时,要求待测电阻的电压从0开始可以连续调节,则在上述器材中应选出的器材是 (填器材前面的字母代号). ②在线框内画出用伏安法测量该电阻的阻值时的实验电路图. |
17. 难度:中等 | |
一根长为l的线吊着一质量为m的带电量为q的小球静止在水平向右的匀强电场中,如图所示,线与竖直方向成37°角,现突然将该电场方向变为向下且大小不变,不考虑因电场的改变而带来的其他影响,(重力加速度为g),求: (1)匀强电场的电场强度的大小; (2)求小球经过最低点时线的拉力. |
18. 难度:中等 | |
在光滑水平面上有两个小木块A和B,其质量mA=1kg、mB=4kg,它们中间用一根轻质弹簧相连.一颗水平飞行的子弹质量为m=50g,以V=500m/s的速度在极短时间内射穿两木块,已知射穿A木块后子弹的速度变为原来的,且子弹射穿A木块损失的动能是射穿B木块损失的动能的2倍.求:系统运动过程中弹簧的最大弹性势能. |
19. 难度:中等 | |
如图所示,在倾角为30°的光滑斜面上固定一光滑金属导轨CDEFG,图中OH∥CD∥FG,∠DEF=60°,CD=DE=EF=FG=OE=L;一根质量为m、长度为2L的导体棒AB在电机牵引下,以恒定速度v沿OH方向从斜面底端滑上导轨并到达斜面顶端,O是AB棒的中点,AB⊥OH.金属导轨的CD、FG段电阻不计,DEF段与AB棒材料与横截面积均相同,单位长度的电阻均为r,整个斜面处在垂直斜面向上、磁感应强度为B的匀强磁场中.求: (1)导体棒在导轨DEF上滑动时电路中电流的大小; (2)导体棒运动到DF位置时AB两端的电压; (3)将导体棒从底端拉到斜面顶端过程电机对杆做的功. |
20. 难度:中等 | |
如图所示,倾角为30°的粗糙斜面的底端有一小车,车内有一根垂直小车底面的细直管,车与斜面间的动摩擦因数,在斜面底端的竖直线上,有一可以上下移动的发射枪,能够沿水平方向发射不同速度的带正电的小球,其电量与质量之比=0.5773×102c/kg(计算时取×102c/kg),在竖直线与斜面之间有垂直纸面向外的匀强磁场和竖直向上的匀强电场,小球在运动过程中重力和电场力始终平衡.当小车以V=7.2m/s的初速度从斜面底端上滑至2.7m的A处时,小球恰好落入管中且与管壁无碰撞,此时小球的速率是小车速率的两倍.取g=10m/s2.求: (1)小车开始上滑到经过A处所用的时间; (2)匀强磁场的磁感应强度的大小. |