1. 难度:中等 | |
对于分子动理论和物体内能理解,下列说法正确的是( ) A.温度高的物体内能不一定大,但分子平均动能一定大 B.当分子间的距离增大时,分子间的引力在减小,但斥力减小得更快,所以分子间作用力总表现为引力 C.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动 D.扩散现象说明分子间存在斥力 |
2. 难度:中等 | |
如图所示,物体m静止于一斜面上,斜面固定,若将斜面的倾角θ稍微增加一些,物体m仍然静止在斜面上,则( ) A.斜面对物体的支持力变大 B.斜面对物体的摩擦力变大 C.斜面对物体的摩擦力变小 D.物体所受的合外力变大 |
3. 难度:中等 | |
对一定质量的理想气体,下列判断正确的是( ) A.气体吸热,温度也可能降低 B.气体对外做功,温度一定降低 C.气体体积不变,压强增大,内能一定增大 D.气体温度不变,压强增大,内能一定减小 |
4. 难度:中等 | |
在场强大小为E的匀强电场中,质量为m、带电量为+q的物体以某一初速沿电场反方向做匀减速直线运动,其加速度大小为0.8qE/m,物体运动s距离时速度变为零.则( ) A.电场力对物体做功qEs B.物体的电势能减少了0.8qEs C.物体的电势能增加了0.8qEs D.物体的动能减少了0.8qEs |
5. 难度:中等 | |
将液体分子看做是球体,且分子间的距离可忽略不计,则已知某种液体的摩尔质量μ,该液体的密度ρ以及阿伏加德罗常数NA,可得该液体分子的半径为( ) A. B. C. D. |
6. 难度:中等 | |
如图所示,气缸内盛有一定质量的理想气体,气缸壁是导热的,缸外环境保持恒温,活塞与气缸壁的接触是光滑的,但不漏气.现通过活塞杆使活塞缓慢地向右移动,这样气体将等温膨胀并通过活塞对外做功.若已知理想气体的内能只与温度有关,则下列说法中正确的是( ) A.气体是从单一热源吸热,并全部用来对外做功,因此此过程违反热力学第二定律 B.气体是从单一热源吸热,但并未全部用来对外做功,所以此过程不违反热力学第二定律 C.气体是从单一热源吸热,并全部用来对外做功,但此过程不违反热力学第二定律 D.气体不是从单一热源吸热,且并未全部用来对外做功,所以此过程不违反热力学第二定律 |
7. 难度:中等 | |
如图所示为一简谐横波在t时刻的波形图,箭头表示波的传播方向,该列波的波速大小为v,a、b、c、d是介质中4个质量相等的振动质点,由此可知( ) A.在t时刻,在4个质点中d的动能最大,c的动能为最小 B.在时刻,在4个质点中d的动能最大,c的动能为最小 C.从t时刻算起,在4个质点中a将比b先到达其平衡位置 D.从时刻算起,质点a将比b先到达其平衡位置 |
8. 难度:中等 | |
人造卫星绕地球做圆周运动,因受大气阻力作用,它近似做半径逐渐变化的圆周运动则( ) A.它的动能逐渐减小 B.它的轨道半径逐渐减小 C.它的运行周期逐渐变大 D.它的向心加速度逐渐减小 |
9. 难度:中等 | |
如图所示的塔吊臂上有一可以沿水平方向运动的小车A,小车下装有吊着物体B的吊钩.在小车A与物体B以相同的水平速度沿吊臂方向匀速运动的同时,吊钩将物体B向上吊起,A、B之间的距离以d=H-2t2(SI)(SI表示国际单位制,式中H为吊臂离地面的高度)规律变化,则物体做( ) A.速度大小不变的曲线运动 B.速度大小增加的曲线运动 C.加速度大小方向均不变的曲线运动 D.加速度大小方向均变化的曲线运动 |
10. 难度:中等 | |
如图所示,用竖直向下的恒力F通过跨过光滑定滑轮的细线拉动光滑水平面上的物体,物体沿水平面移动过程中经过A、B、C三点,设AB=BC,物体经过A、B、C三点时的动能分别为EKA,EKB,EKC,则它们间的关系应是( ) A.EKB-EKA=EKC-EKB B.EKB-EKA<EKC-EKB C.EKB-EKA>EKC-EKB D.EKC<2EKB |
11. 难度:中等 | |
为了只用一根弹簧和一把刻度尺测定某滑块与水平桌面间的动摩擦因数μ(设μ为定值),某同学经查阅资料知:一劲度系数为k的轻弹簧由伸长量为x至恢复到原长过程中,弹力所做的功为kx2,于是他设计了下述实验: 第1步:如图所示,将弹簧的一端固定的竖直墙上,弹簧处于原长时另一端位置A.现使滑块紧靠弹簧将其压缩至位置B,松手后滑块在水平桌面上运动一段距离,到达C位置时停止: 第2步:将滑块挂在竖直放置的弹簧下,弹簧伸长后保持静止状态. 回答下列问题: (1)你认为,该同学应该用刻度尺直接测量的物理量是(写出名称并用符号表示) . (2)用测得的物理量表示滑块与水平桌面间动摩擦因数μ的计算式:μ= . |
12. 难度:中等 | |||||||||||||||||||||||||||||||||||||||||||
两实验小组使用相同规格的元件,按右图电路进行测量.他们将滑动变阻器的滑片P分别置于a、b、c、d、e五个间距相同的位置(a、e为滑动变阻器的两个端点),把相应的电流表示数记录在表一、表二中.对比两组数据,发现电流表示数的变化趋势不同.经检查,发现其中一个实验组使用的滑动变阻器发生断路.
(2)表二中,对应滑片P在X(d、e之间的某一点) 处的电流表示数的可能值为:______ (A)0.16A (B)0.26A (C)0.36A (D)0.46A. |
13. 难度:中等 | |
原地起跳时,先屈腿下蹲,然后突然蹬地.从开始蹬地到离地是加速过程(视为匀加速)加速过程中重心上升的距离称为“加速距离”.离地后重心继续上升,在此过程中重心上升的最大距离称为“竖直高度”.现有下列数据:人原地上跳的“加速距离”d1=0.50m,“竖直高度”h1=1.0m;跳蚤原地上跳的“加速距离”d2=0.00080m,“竖直高度”h2=0.10m.假想人具有与跳蚤相等的起跳加速度,而“加速距离”仍为0.50m,则人上跳的“竖直高度”是多少? |
14. 难度:中等 | |
A、B两小球同时从距地面高为h=20m处的同一点抛出,初速度大小均为v=15m/s,A球竖直向上抛出,B球水平抛出,空气阻力不计,重力加速度取g=10m/s2. 求:(1)A球经多长时间落地? (2)B球落地时,A、B两球间的距离是多少? |
15. 难度:中等 | |
如图所示,长为L的细绳竖直悬挂着一质量为2m的小球A,恰好紧挨着放置在水平面上质量为m的物块B.现保持细绳绷直,把小球向左上方拉至细绳与竖直方向成60°的位置,然后释放小球.小球到达最低点时恰好与物块发生碰撞,而后小球向右摆动的最大高度为L/8,物块则向右滑行了L的距离而静止,求物块与水平面间的动摩擦因数μ. |
16. 难度:中等 | |
如图所示,四个电阻阻值均为R,电键S闭合时,有一质量为m,带电量为q的小球静止于水平放置的平行板电容器的中点.现打开电键S,这个带电小球便向平行板电容器的一个极板运动,并和此板碰撞,碰撞过程中小球没有机械能损失,只是碰后小球所带电量发生变化,碰后小球带有和该板同种性质的电荷,并恰能运动到另一极板,设两极板间距离为d,不计电源内阻,求: (1)电源电动势E多大? (2)小球与极板碰撞后所带的电量为多少? |
17. 难度:中等 | |
图中MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计.导轨所在平面与磁感应强度B为0.50T的匀强磁场垂直.质量m为6.0×10-3kg、电阻为1.0Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R1.当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27W,重力加速度取10m/s2,试求速率v和滑动变阻器接入电路部分的阻值R2. |
18. 难度:中等 | |
在某一真空空间内建立xoy坐标系,从原点O处向第Ⅰ象限发射一比荷的带正电的粒子(重力不计),速度大小v=103m/s、方向与x轴正方向成30°角. (1)若在坐标系y轴右侧加有匀强磁场区域,在第Ⅰ象限,磁场方向垂直xoy平面向外;在第Ⅳ象限,磁场方向垂直xoy平面向里;磁感应强度均为B=1T,如图(a)所示.求粒子从O点射出后,第2次经过x轴时的坐标x1. (2)若将上述磁场改为如图(b)所示的匀强磁场.在t=0到时,磁场方向垂直于xoy平面外;在到时,磁场方向垂直于xoy平面向里,此后该空间不存在磁场.在t=0时刻,粒子仍从O点以与原来相同的速度v射入,求粒子从O点射出后第2次经过x轴时的坐标x2. |