1. 难度:中等 | |
用计算机辅助实验系统(DIS)做验证牛顿第三定律的实验,如图所示是把两个测力探头的挂钩钩在一起,向相反方向拉动,观察显示器屏幕上出现的结果.观察分析两个力传感器的相互作用随着时间变化的曲线,以下结论的不正确的是( ) A.作用力与反作用力大小相等 B.作用力与反作用力方向相反 C.作用力与反作用力作用在同一物体上 D.作用力与反作用力同时存在,同时消失 |
2. 难度:中等 | |
如图是一个电工应用某种逻辑电路制作的简单车门报警电路图.图中的两个按钮开关分别装在汽车的两道门上.只要其中任何一个开关处于开路状态,发光二极管就发光.请你根据报警装置的要求,在电路图的虚线框内应是何种电路?( ) A.“与”门 B.“或”门 C.“非”门 D.“与非”门 |
3. 难度:中等 | |
甲、乙两物体同时从同一地点沿同一方向做直线运动的速度-时间图象如图所示,则( ) A.两物体两次相遇的时刻是2s和6s B.4s后甲在乙前面 C.两物体相距最远的时刻是2s末 D.乙物体先向前运动2s,随后向后运动 |
4. 难度:中等 | |
如图所示,真空中O点有一点电荷,在它产生的电场中有a、b两点,a点的场强大小为Ea,方向与 ab连线成60°角b点的场强大小为Eb,方向与ab连线成30°角.关于a、b两点的场强大小Ea、Eb及电势φa、φb的关系,以下结论正确的是( ) A. B. C.Ea=3Eb,φa>φb D.Ea=3Eb,φa<φb |
5. 难度:中等 | |
如图是某离子速度选择器的原理示意图,在一半径为R=10cm的圆形筒内有B=1×10-4T的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔a、b分别作为入射孔和出射孔.现有一束比荷为=2×1011C/kg的正离子,以不同角度α入射,最后有不同速度的离子束射出,其中入射角α=30°,且不经碰撞而直接从出身孔射出的离子的速度v大小是( ) A.4×105m/s B.2×105m/s C.4×106m/s D.2×106m/s |
6. 难度:中等 | |
质量为m的汽车发动机的功率大小恒为P,阻力大小恒为Ff,牵引力用F表示,汽车由静止开始,经过时间t沿直线行驶位移大小为s时,速度恰好达到最大值vm,则此过程中汽车发动机所做的功正确的是( ) A.Pt B.Ffvmt C.mvm2+Ffs D.Fs |
7. 难度:中等 | |
压敏电阻的阻值随所受压力的增大而减小,有位同学利用压敏电阻设计了判断小车运动状态的装置,其工作原理如图(a)所示.将压敏电阻和一块挡板固定在绝缘小车上,中间放置一个绝缘重球.小车向右做直线运动过程中,电流表示数如图(b)所示.下列判断正确的是( ) A.从t1到t2时间内,小车做匀速直线运动 B.从t1到t2时间内,小车做加速度变大的直线运动 C.从t2到t3时间内,小车做匀速直线运动 D.从t2到t3时间内,小车做匀加速直线运动 |
8. 难度:中等 | |
我国于2007年10月24日发射的“嫦娥一号”探月卫星简化后的路线示意图如图所示.卫星由地面发射后,经过发射轨道进入停泊轨道,然后在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道,卫星开始对月球进行探测.已知地球与月球的质量之比为a,卫星的停泊轨道与工作轨道的半径之比为b,卫星在停泊轨道与工作轨道上均可视为做匀速圆周运动,则( ) A.卫星在停泊轨道和工作轨道运行的速度之比为 B.卫星在停泊轨道和工作轨道运行的周期之比为 C.卫星在停泊轨道和工作轨道运行的向心加速度之比为 D.卫星在停泊轨道运行的速度大于地球的第一宇宙速度 |
9. 难度:中等 | |
如图,质量为M、长度为l的小车静止在光滑的水平面上.质量为m的小物块(可视为质点)放在小车的最左端.现用一水平恒力F作用在小物块上,使物块从静止开始做匀加速直线运动.物块和小车之间的摩擦力为Ff.物块滑到小车的最右端时,小车运动的距离为s.在这个过程中,以下结论正确的是( ) A.物块到达小车最右端时,小车具有的动能为Ffs B.物块到达小车最右端时具有的动能为F(l+s) C.物块克服摩擦力所做的功为Ff(l+s) D.物块和小车增加的机械能为Ffs |
10. 难度:中等 | |
有一游标卡尺,主尺的最小分度是1mm,游标上有20个小的等分刻度.用它测量一小球的直径,如图甲所示的读数是______mm.用螺旋测微器测量一根金属丝的直径,如图乙所示的读数是______mm. |
11. 难度:中等 | |
现有一电池,其电动势E约为9V,内阻r在35~55Ω范围内,最大允许电流为50mA.为测定这个电池的电动势和内阻,某同学利用如图甲所示的电路进行实验.图中电压表的内电阻很大,对电路的影响可以不计;R为电阻箱,阻值范围为0~9 999Ω;R为保护电阻. (1)实验室备有的定值电阻R有以下几种规格,本实验应选用______ A.10Ω,2.5W B.50Ω,1.0W C.150Ω,1.0W D.1 500Ω,5.0W (2)按照图甲所示的电路图,将图乙的实物连接成实验电路; (3)该同学接好电路后,闭合开关S,调整电阻箱的阻值读出电压表的示数U,再改变电阻箱阻值,取得多组数据,然后通过作出有关物理量的线性图象,求得电源的电动势E和内阻r. a.请写出与你所作线性图象对应的函数表达式______; b.请在图丙的虚线框内坐标中作出定性图象(要求标明两个坐标轴所表示的物理量,用符号表示); c.图丙中______表示E,______表示r. |
12. 难度:中等 | |
如图所示,平行光滑U形导轨倾斜放置,倾角为θ=37°,导轨间的距离L=1.0m,电阻R=0.8Ω,导轨电阻不计.匀强磁场的方向垂直于导轨平面,磁感强度B=1.0T,质量m=0.5kg、电阻r=0.2Ω的金属棒ab垂直置于导轨上.现用沿轨道平面且垂直于金属棒的大小为F=5.0N的恒力,使金属棒ab从静止起沿导轨向上滑行,当ab棒滑行0.8m后速度不变.已知sin37°=0.6,cos37°=0.8,g取10m/s2.完成下列问题: (1)在速度不变之前,导体棒的运动情况上是______ A.匀加速直线运动 B.加速度逐渐减小的加速运动 C.加速度逐渐增大的加速运动 D.先做加速度逐渐增大的加速运动,再做加速度逐渐减小的加速运动 (2)金属棒匀速运动时的速度大小是______;金属棒匀速运动时电阻R上的功率______. (3)求金属棒从静止起到刚开始匀速运动的过程中,电阻R上产生的热量为多少? |
13. 难度:中等 | |
一导体材料样品的体积为a×b×c,A'、C、A、C'为其四个侧面,如图所示.已知导体样品中载流子是自由电子,且单位体积中的自由电子数为n,电阻率为ρ,电子的电荷量为e.沿x方向通有电流I. (1)导体A'、A两个侧面之间的电压大小为______,导体中自由电子定向移动的速率是______. (2)将该导体样品放在匀强磁场中,磁场方向沿z轴正方向,则导体样品侧面C的电势______侧面C'的电势(填“高于”、“低于”或“等于”). (3)在(2)中,达到稳定状态时,沿x方向电流仍为I,若测得C、C'两面的电势差为U,计算匀强磁场的磁感应强度. |
14. 难度:中等 | |
太阳系以外存在着许多恒星与行星组成的双星系统.它们运行的原理可以理解为,质量为M的恒星和质量为m的行星(M>m),在它们之间的万有引力作用下有规则地运动着.如图所示,我们可认为行星在以某一定点C为中心、半径为a的圆周上做匀速圆周运动(图中没有表示出恒星).设万有引力常量为G,恒星和行星的大小可忽略不计. (1)恒星与点C间的距离是______; (2)试在图中粗略画出恒星运动的轨道和位置; (3)计算恒星的运行速率v. |
15. 难度:中等 | |
为了测量某住宅大楼每层的平均高度(层高)及电梯运行情况,甲、乙两位同学在一楼电梯内用电子体重计及秒表进行了以下实验:一质量为m=50kg的甲同学站在体重计上,乙同学记录电梯从地面一楼到顶层全过程中,体重计示数随时间变化的情况,并作出了如图所示的图象,已知t=0时,电梯静止不动,从电梯内楼层按钮上获知该大楼共19层(g取10m/s2).求:(1)电梯启动和制动时的加速度大小;(2)该大楼的层高. |
16. 难度:中等 | |
图是一种家用电熨斗的电路原理图(额定电压为220V),R是定值电阻,R是可变电阻(调温开关),其电阻值均不受温度影响. (1)该电熨斗温度最低时的耗电功率为121W,温度最高时的耗电功率为484W,求R的阻值及R的阻值变化范围. (2)假定电熨斗每秒钟散发的热量q跟电熨斗表面温度与环境温度的温差关系如右图所示,现在温度为20℃的房间使用该电熨斗来熨烫毛料西服,要求熨斗表面温度为220℃,且保持不变,问应将R的阻值调为多大? |
17. 难度:中等 | |
如图所示,在纸平面内建立的直角坐标系xoy,在第一象限的区域存在沿y轴正方向的匀强电场.现有一质量为m,电量为e的电子从第一象限的某点P(L,L)以初速度v沿x轴的负方向开始运动,经过x轴上的点Q(,0)进入第四象限,先做匀速直线运动然后进入垂直纸面的矩形匀强磁场区域,磁场左边界和上边界分别与y轴、x轴重合,电子偏转后恰好经过坐标原点O,并沿y轴的正方向运动,不计电子的重力.求 (1)电子经过Q点的速度v; (2)该匀强磁场的磁感应强度B和磁场的最小面积S. |
18. 难度:中等 | |
如图所示,将质量均为m厚度不计的两物块A、B用轻质弹簧相连接,只用手托着B物块于H高处,A在弹簧弹力的作用下处于静止,将弹簧锁定.现由静止释放A、B,B物块着地时解除弹簧锁定,且B物块的速度立即变为0,在随后的过程中当弹簧恢复到原长时A物块运动的速度为υ,且B物块恰能离开地面但不继续上升.已知弹簧具有相同形变量时弹性势能也相同. (1)B物块着地后,A向上运动过程中合外力为0时的速度υ1; (2)B物块着地到B物块恰能离开地面但不继续上升的过程中,A物块运动的位移△x; (3)第二次用手拿着A、B两物块,使得弹簧竖直并处于原长状态,此时物块B离地面的距离也为H,然后由静止同时释放A、B,B物块着地后速度同样立即变为0.求第二次释放A、B后,B刚要离地时A的速度υ2. |