1. 难度:压轴 | |
(多选)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零.重力加速度为g.则上述过程中( ) A.物块在A点时,弹簧的弹性势能等于W-μmga B.物块在B点时,弹簧的弹性势能小于W-μmga C.经O点时,物块的动能小于W-μmga D.物块动能最大时弹簧的弹性势能小于物块在B点时弹簧的弹性势能
|
2. 难度:中等 | |
(单选)如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时恰好对轨道没有压力.已知AP=2R,重力加速度为g,则小球从P到B的运动过程中( ) A.重力做功2mgR B.机械能减少mgR C.合外力做功mgR D.克服摩擦力做功mgR
|
3. 难度:中等 | |
(多选)将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,v-t图象如图所示.以下判断正确的是( ) A.前3 s内货物处于超重状态 B.最后2 s内货物只受重力作用 C.前3 s内与最后2 s内货物的平均速度相同 D.第3 s末至第5 s末的过程中,货物的机械能守恒
|
4. 难度:困难 | |
(多选)(原创题)一质点在0~15 s内竖直向上运动,其加速度—时间变化的图象如图所示,若取竖直向下为正,g取10 m/s2,则下列说法正确的是( ) A.质点的机械能不断增加 B.在0~5 s内质点的动能减小 C.在10~15 s内质点的机械能一直增加 D.在t=15 s时质点的机械能大于t=5 s时质点的机械能
|
5. 难度:中等 | |
(多选)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( ) A.两滑块组成系统的机械能守恒 B.重力对M做的功等于M动能的增加 C.轻绳对m做的功等于m机械能的增加 D.两滑块组成系统的机械能损失等于M克服摩擦力做的功
|
6. 难度:简单 | |
(单选)质量相等的均质柔软细绳A、B平放于水平地面,绳A较长.分别捏住两绳中点缓慢提起,直至全部离开地面,两绳中点被提升的高度分别为hA、hB,上述过程中克服重力做功分别为WA、WB.若( ) A.hA=hB,则一定有WA=WB B.hA>hB,则可能有WA<WB C.hA<hB,则可能有WA=WB D.hA>hB,则一定有WA>WB
|
7. 难度:困难 | |
(多选)如图所示,倾角θ=30°的粗糙斜面固定在地面上,长为l、质量为m、粗细均匀、质量分布均匀的软绳置于斜面上,其上端与斜面顶端齐平.用细线将物块与软绳连接,物块由静止释放后向下运动,直到软绳刚好全部离开斜面(此时物块未到达地面),在此过程中( ) A.物块的机械能逐渐增加 B.软绳重力势能共减少了mgl C.物块重力势能的减少等于软绳克服摩擦力所做的功 D.软绳重力势能的减少小于其动能的增加与克服摩擦力所做功之和
|
8. 难度:中等 | |
(2014·衡水质检)如图所示,质量为m的长木块A静止于光滑水平面上,在其水平的上表面左端放一质量为m的滑块B,已知木块长为L,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F拉滑块B. (1)当长木块A的位移为多少时,B从A的右端滑出? (2)求上述过程中滑块与木块之间产生的内能.
|
9. 难度:困难 | |
(2014·天津六校联考)如图所示,一质量为m=2 kg的滑块从半径为R=0.2 m的光滑四分之一圆弧轨道的顶端A处由静止滑下,A点和圆弧对应的圆心O点等高,圆弧的底端B与水平传送带平滑相接.已知传送带匀速运行的速度为v0=4 m/s,B点到传送带右端C点的距离为L=2 m.当滑块滑到传送带的右端C时,其速度恰好与传送带的速度相同.(g=10 m/s2),求: (1)滑块到达底端B时对轨道的压力; (2)滑块与传送带间的动摩擦因数μ; (3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q.
|
10. 难度:困难 | |
(2014·长沙一中月考)光滑水平面与一半径为R=2.5 m的竖直光滑圆轨道平滑连接,如图所示,物体可以由圆轨道底端阀门(图中未画出)进入圆轨道,水平轨道上有一轻质弹簧,其左端固定在墙壁上,右端与质量为m=0.5 kg的小球A接触但不相连,今向左推小球A压缩弹簧至某一位置后,由静止释放小球A,测得小球A到达圆轨道最高点时对轨道的压力大小为FN=10 N,g=10 m/s2. (1)求弹簧的弹性势能Ep; (2)若弹簧的弹性势能Ep=25 J,小球进入圆轨道后阀门关闭,通过计算说明小球会不会脱离圆轨道.若脱离,求在轨道上何处脱离(可用三角函数表示),若不能脱离,求小球对轨道的最大与最小压力的差ΔF.
|