1. 难度:简单 | |
杭新景高速公路限速120km/h,一般也要求速度不小于80km/h。冬天大雾天气的时候高速公路经常封道,否则会造成非常严重的车祸。如果某人大雾天开车在高速上行驶,设能见度(观察者与能看见的最远目标间的距离)为30m,该人的反应为0.5s,汽车刹车时能产生的最大加速度的大小为5m/s2,为安全行驶,汽车行驶的最大速度是( ) A.10m/s B.15m/s C. m/s D.20m/s
|
2. 难度:简单 | |
在一场英超联赛中,我国球员孙继海大力踢出的球飞行15m后,击在对方球员劳特利奇的身上,。假设球击中身体时的速度约为22m/s,离地高度约为1.5m,估算孙继海踢球时脚对球做的功为( ) A.15J B.150J C.1500J D.15000J
|
3. 难度:中等 | |
在竖直方向的匀强磁场中,水平放置一个矩 形的金属导体框,规定磁场方向向上为正,导 体框中电流的正方向如图所示,当磁场的磁感应强度B随时间t如图变化时,下图中正确表示导体框中感应电流变化的是( )
|
4. 难度:简单 | |
在如图所示的电路中,R1、R2、R3和R4皆为定值电阻,R5为可变电阻,电源电动势为E,内阻为r.记电流表的读数为I,电压表的读数为U,当R5的滑动触点向上移动时( ) A. I变大,U变小 B. I变大,U变大 C. I变小,U变大 D. I变小,U变小
|
5. 难度:简单 | |
如图所示的电容式话筒就是一种电容式传感器,其原理是:导电性振动膜片与固定电极构成了一个电容器,当振动膜片在声压的作用下振动时,两个电极之间的电容发生变化,电路中电流随之变化,这样声信号就变成了电信号。则当振动膜片向右振动时( ) A.电容器电容值增大 B.电容器带电荷量减小 C.电容器两极板间的场强增大 D.电阻R上电流方向自左向右
|
6. 难度:中等 | |
如图所示,水平的平行虚线间距为d,其间有磁感应强度为B的匀强磁场。一个正方形线框边长为l(d>l),质量为m,电阻为R。开始时, 线框的下边缘到磁场上边缘的距离为h。将线框由静止释放,其下边缘刚进入磁场时,线框的加速度恰为零。则线框进入磁场的过程和从磁场下边穿出磁场的过程相比较,有( ) A.产生的感应电流的方向相同 B.所受的安培力的方向相反 C.进入磁场的过程中产生的热量小于穿出磁场的过程中产生的热量 D.进入磁场过程所用的时间大于穿出磁场过程中所用的时间
|
7. 难度:中等 | |
如图,在光滑、绝缘的水平桌面上固定放置一光滑、绝缘的挡板ABCD,AB段为直线挡板,BCD段是半径为R的圆弧挡板,挡板处于场强为E的匀强电场中,电场方向与圆直径MN平行。现有一带电量为q、质量为m的小球由静止从挡板内侧上的A点释放,并且小球能沿挡板内侧运动到D点抛出,则( ) A.小球运动到N点时,挡板对小球的弹力可能为零 B.小球运动到N点时,挡板对小球的弹力可能为Eq C.小球运动到M点时,挡板对小球的弹力可能为零 D.小球运动到C点时,挡板对小球的弹力一定大于mg
|
8. 难度:中等 | |||||||||||||||||||||||||||||
(10分)某同学利用如图所示的装置进行“探究加速度与物体质量的关系”的实验,A为小车,B为打点计时器,C为装有砝码的小桶,D为一端带有定滑轮的长方形木板。实验时,保证砝码和小桶质量m不变,改变小车质量M,分别测得小车的加速度与对应的质量M的数据如下表:
(1)根据上表数据,为进一步直观地反映F不变时,a与M的关系,在坐标纸中选择适当的物理量为坐标轴建立坐标系,作出图线。(作在答题纸上) (2)根据所绘的图线,计算砝码和小桶的总重力为 N,且表明该同学在实验操作中最可能存在的问题:
|
9. 难度:中等 | |
(10分)某同学到实验室做“测定电源电动势和内阻”的实验时,发现实验桌上还有一个定值电阻R0。他设计了如图甲所示的电路来测量电源电动势E、内阻r和R0的阻值。实验时用U1、U2、I分别表示电表V1、V2、A的读数,并将滑动变阻器的滑片P移动到不同位置时,刻录了U1、U2、I的一系列值。 (1)他在同一坐标纸上分别作出U1-I、U2-I图线,如图乙所示,则U1-I图线是图中 (填A或B)。 (2)定值电阻R0的计算表达式是:R0= (用测得的U1、U2、I表示),若实验中的所有操作和数据处理无错误,实验中测得R0值 (填“大于”“等于”或“小于”)实际值。 (3)若实验中没有电压表V1 ,你能测出的量是 (填“电动势E”“内阻r”或“R0”,下同)。 (4)若实验中没有电压表V2 ,你能测出的量是 。
|
10. 难度:困难 | |
如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.30m。导轨电阻忽略不计,其间接有固定电阻R=0.40Ω.导轨上停放一质量为m=0.10kg、电阻r=0.20Ω的金属杆ab,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向竖直向下。利用一外力F沿水平方向拉金属杆ab,使之由静止开始做匀加速直线运动,电压传感器可将R两端的电压U即时采集并输入电脑,并获得U随时间t的关系如图乙所示。求: (1)金属杆加速度的大小; (2)第2s末外力的瞬时功率。
|
11. 难度:中等 | |
冰壶赛场在比赛前需要调试赛道的冰面情况。设冰壶质量为m,冰壶与合格冰道的动摩擦因数为μ。调试时,测得冰壶在合格赛道末端速度为初速度的0.9倍,总耗时为t。假设冰道内有一处冰面出现异常,导致冰壶与该处冰面的动摩擦因素为2μ,且测出冰壶到达赛道末端的速度为初速度的0.8倍,设两次调试时冰壶初速度均相同。求: (1)冰壶的初速度大小和冰道的总长度; (2)异常冰面的长度;
|
12. 难度:困难 | |
如图所示,有三个宽度均相等的区域I、Ⅱ、Ⅲ;在区域I和Ⅲ内分别为方向垂直于纸面向外和向里的匀强磁场(虚线为磁场边界面,并不表示障碍物),区域I磁感应强度大小为B,某种带正电的粒子,从孔O1以大小不同的速度沿图示与夹角α=300的方向进入磁场(不计重力)。已知速度为v0和2v0时,粒子仅在区域I内运动且运动时间相同,均为t0。 (1)试求出粒子的比荷q/m、速度为2v0的粒子从区域I射出时的位置离O1的距离L; (2)若速度为v的粒子在区域I内的运时间为t0/5,在图中区域Ⅱ中O1O2上方加竖直向下的匀强电场,O1O2 下方对称加竖直向上的匀强电场,场强大小相等,使速度为v的粒子每次均垂直穿过I、Ⅱ、Ⅲ区域的边界面并能回到O1点,则请求出所加电场场强大小与区域Ⅲ磁感应强度大小。
|