1. 难度:简单 | |
以下说法中不符合史实的有( ) A.平均速度、瞬时速度、加速度的概念最早是由伽利略建立的 B.牛顿发现了万有引力定律,卡文迪许用实验方法测出万有引力恒量的数值,从而使万有引力定律有了真正的实用价值 C.牛顿第一定律是牛顿通过大量的实验探究直接总结出来的 D.奥斯特发现了电与磁间的关系,即电流的周围存在着磁场;法拉第通过实验发现了磁也能产生电,即电磁感应现象
|
2. 难度:中等 | |
如图,固定斜面,CD段光滑,DE段粗糙,A、B两物体叠放在一起从C点由静止下滑,下滑过程中A、B保持相对静止,则( ) A.在CD段时,A受三个力作用 B.在DE段时,A可能受二个力作用 C.在DE段时,A受摩擦力方向一定沿斜面向上 D.整个下滑过程中,A、B均处于失重状态
|
3. 难度:简单 | |
如图所示,吊环运动员将吊绳与竖直方向分开相同的角度,重力大小为G的运动员静止时,左边绳子张力为T1,右边绳子张力为T2。则下列说法正确的是( ) A.T1和 T2是一对作用力与反作用力 B.运动员两手缓慢撑开时,T1和 T2都会变小 C.T2一定大于G D.T1+ T2=G
|
4. 难度:简单 | |
不可回收的航天器在使用后,将成为太空垃圾.如图所示是漂浮在地球附近的太空垃圾示意图,对此如下说法,正确的是( ) A.离地越低的太空垃圾运行周期越大 B.离地越高的太空垃圾运行角速度越小 C.由公式v=得,离地越高的太空垃圾运行速率越大 D.太空垃圾一定能跟同一轨道上同向飞行的航天器相撞
|
5. 难度:中等 | |
图甲是小型交流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场,图中电流表为交流电流表。线圈绕垂直于磁场方向的水平轴OO/ 沿逆时针方向匀速转动,从图示位置开始计时,产生的交变电流随时间变化的图象如图乙所示,以下判断正确的是( ) A.线圈转动的角速度为50π rad/s B.电流表的示数为10 A C.0.01 s时线圈平面与磁场方向垂直 D.0.02 s时电阻R中电流的方向自左向右
|
6. 难度:中等 | |
如图,平行板电容器两极板水平放置,现将其和二极管串联接在电源上,已知A和电源正极相连,二极管具有单向导电性。一带电小球沿AB中心水平射入,打在B极板上的N点,小球的重力不能忽略且重力一定大于电场力,现通过上下移动A板来改变两极板AB间距(两极板仍平行),则下列说法正确的是( ) A.若小球带正电,当AB间距增大时,小球将打在N的右侧 B.若小球带正电,当AB间距减小时,小球将打在N的左侧 C.若小球带负电,当AB间距减小时,小球将打在N的右侧 D.若小球带负电,当AB间距增大时,小球将打在N的左侧
|
7. 难度:中等 | |
电磁泵在目前的生产、科技中得到了广泛应用.如图所示,泵体是一个长方体,ab边长为L1,两侧端面是边长为L2的正方形;流经泵体内的液体密度为ρ、在泵头通入导电剂后液体的电导率为σ(电阻率的倒数),泵体所在处有方向垂直向外的磁场B,把泵体的上下两表面接在电压为U(内阻不计)的电源上,则( ) A. 泵体上表面应接电源正极 B. 通过泵体的电流I=UL1/σ C. 增大磁感应强度可获得更大的抽液高度 D. 增大液体的电阻率可获得更大的抽液高度
|
8. 难度:中等 | |
在以速度vo水平飞行的飞机上,由静止释放一质量为m的物体,飞行一段时间后,物体经过空间P点,其动能为Ek,不计空气阻力,则下列说法正确的是( ) A.物体经过P点时竖直分速度为 B.此过程中物体下降的高度 C.此过程中物体的水平位移为 D.此过程中物体运动的平均速度为
|
9. 难度:中等 | |
如图甲所示,一位同学利用光电计时器等器材做“验证机械能守恒定律”的实验。有一直径为d、质量为m的金属小球由A处由静止释放,下落过程中能通过A处正下方、固定于B处的光电门,测得A、B间的距离为H(H>>d),光电计时器记录下小球通过光电门的时间为t,当地的重力加速度为g.则: ⑴如图乙所示,用游标卡尺测得小球的直径d = mm. ⑵小球经过光电门B时的速度表达式为 ⑶多次改变高度H,重复上述实验,作出随H的变化图象如图丙所示,当图中已知量t0、H0和重力加速度g及小球的直径d满足以下表达式: 时,可判断小球下落过程中机械能守恒。 ⑷实验中发现动能增加量△EK总是稍小于重力势能减少量△EP,增加下落高度后,则将 (选填“增加”、“减小”或“不变”)。
|
10. 难度:中等 | |
某同学想描绘两个非线性电阻的伏安特性曲线,实验电路图如图甲所示 ⑴在图乙中以笔划线代替导线,按实验要求将实物图中的连线补充完整。 ⑵该同学利用图甲的原理图分别作出了这两个非线性电阻的伏安特性曲线,如图所示。由图可知,这两个元件的阻值随电压的增大而 (选填“增大”或“减小”) ⑶现先将这两个电阻并联,然后接在电动势E=9.0V、内电阻r0 = 2.0Ω的电源上. ①请在图丙中作出并联电阻部分的图线; ②根据图线可以求出电阻R1消耗的功率P1 = ,电阻R2消耗的功率P2= .
|
11. 难度:困难 | |
如图所示,传送带A、B间距离L=5 m且在同一水平面内,两个轮子半径均为r=0.2 m,半径R=0.4 m的固定竖直光滑圆轨道与传送带相切于B点,C点是圆轨道的最高点.当传送带静止不动时,质量m=1 kg的小煤块在A点以初速度v0=2 m/s开始运动,刚好能运动到C点.重力加速度g=10 m/s2.求: (1)当传送带的轮子以ω=10 rad/s的角速度匀速转动时,将小煤块无初速地放到传送带上的A点,求小煤块从A点运动到B点的过程中在传送带上划过痕迹的长度? (2)当传送带的轮子匀速转动的角速度在什么范围内时,将小煤块无初速地放到传送带上的A点,小煤块运动到C点时对圆轨道的压力最大,最大压力FC是多大?
|
12. 难度:中等 | |
如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图乙最大值为U0的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大小为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力。求: (1)t=0时刻释放的粒子在P、Q间运动的时间; (2)粒子射入磁场时的最大速率和最小速率; (3)有界磁场区域的最小面积。
|
13. 难度:简单 | |
如图所示为半圆形的玻璃砖,C为AB的中点,OO'为过C点的AB面的垂线。a、b两束不同频率的单色可见细光束垂直AB边从空气射入玻璃砖,且两束光在AB面上入射点到C点的距离相等,两束光折射后相交于图中的P点,以下判断正确的是( ) A.在半圆形的玻璃砖中,a光的传播速度大于b光的传播速度 B.a光的频率大于b光的频率 C.两种色光分别通过同一双缝干涉装置形成的干涉条纹,相邻明条纹的间距a光的较大 D.若a、b两束光从同一介质射入真空过程中,a光发生全反射的临界角大于b光发生全反射的临界角 E.b光比a光更容易发生衍射现象
|
14. 难度:中等 | |
如图所示,一列沿x轴正方向传播的简谐横波在t=0时刻的波形如图中的实线所示,此时这列波恰好传播到P点,且再经过1.2s,坐标为x=8m的Q点开始起振,求: ①该列波的周期T; ②从t=0时刻到Q点第一次达到波峰时,振源O点相对平衡位置的位移y及其所经过的路程s.
|
15. 难度:简单 | |
下列说法正确的是 。 A.发现中子的核反应方程是 B.结合能越大,原子核结构一定越稳定 C.如果使用某种频率的光不能使某金属发生光电效应,则需增大入射光的光照强度才行 D.发生衰变时,元素原子核的质量数不变,电荷数增加1 E.在相同速率情况下,利用质子流比利用电子流制造的显微镜将有更高的分辨率
|
16. 难度:中等 | |
如图所示,光滑平台上有两个刚性小球A和B,质量分别为2m和3m,小球A以速度v0向右运动并与静止的小球B发生碰撞(碰撞过程不损失机械能),小球B飞出平台后经时间t刚好掉入装有沙子向左运动的小车中,小车与沙子的总质量为m,速度为2v0,小车行驶的路面近似看做是光滑的,求: (1)碰撞后小球A和小球B的速度; (2)小球B掉入小车后的速度。
|