1. 难度:简单 | |
某实验小组用如图所示的实验装置来验证楞次定律。当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是 A. a→G→b B. 先a→G→b,后b→G→a C. b→G→a D. 先b→G→a,后a→G→b
|
2. 难度:中等 | |
如图所示,通电螺线管置于闭合金属环a的轴线上,当螺线管中电流I减小时( ) A. 环有缩小的趋势以阻碍原磁通量的减小 B. 环有扩大的趋势以阻碍原磁通量的减小 C. 环有缩小的趋势以阻碍原磁通量的增大 D. 环有扩大的趋势以阻碍原磁通量的增大
|
3. 难度:简单 | |
一长直铁芯上绕有一固定线圈M,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N,N可在木质圆柱上无摩擦移动.M连接在如右图所示的电路中,其中R为滑动变阻器, 和为直流电源,S为单刀双掷开关.下列情况中,可观测到N向左运动的是( ) A. 在S断开的情况下,S向a闭合的瞬间 B. 在S断开的情况下,S向b闭合的瞬间 C. 在S已向a闭合的情况下,将R的滑动头向c端移动时 D. 在S已向a闭合的情况下,将R的滑动头向d端移动时
|
4. 难度:简单 | |
在如图所示的电路中,两个相同的小灯泡和分别串联一个带铁芯的电感线圈L和一个滑动变阻器R,闭合开关S后,调整R,使和发光的亮度一样,此时流过两个灯泡的电流均为I,然后断开S,若时刻再闭合S,则在前后的一小段时间内,正确反映流过的电流、流过的电流随时间t变化的图像是 A. B. C. D.
|
5. 难度:中等 | |
某同学为了验证断电自感现象,自己找来带铁芯的线圈L、小灯泡A、开关S和电池组E , 用导线将它们连接成如图所示的电路.检查电路后,闭合开关S , 小灯泡发光;再断开开关S , 小灯泡仅有不显著的延时熄灭现象.虽然多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因.你认为最有可能造成小灯泡未闪亮的原因是( ) A. 电源的内阻较大 B. 小灯泡电阻偏大 C. 线圈电阻偏大 D. 线圈的自感系数较大
|
6. 难度:简单 | |
如图所示,线圈内有理想边界的磁场,开关闭合,当磁感应强度均匀减小时,有一带电微粒静止于水平放置的平行板电容器中间,若线圈的匝数为n,平行板电容器的板间距离为d,粒子的质量为m,带电荷量为q,线圈面积为S,则下列判断中正确的是 A. 带电微粒带负电 B. 线圈内磁感应强度的变化率为 C. 当下极板向上移动时,带电微粒将向上运动 D. 当开关断开时,带电微粒将做自由落体运动
|
7. 难度:困难 | |
如图甲所示,光滑导轨水平放置在斜向下且与水平方向夹角为60°的匀强磁场中,匀强磁场的磁感应强度B随时间t的变化规律如图乙所示(规定斜向下为正方向),导体棒ab垂直导轨放置,除了电阻R的阻值外,其余电阻不计,导体棒ab在水平外力作用下始终处于静止状态,规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~t时间内,能正确反映流过导体棒ab的电流i和导体棒ab所受水平外力F随时间t变化的图像的是 A. B. C. D.
|
8. 难度:中等 | |
如图所示,圆环a和圆环b的半径之比为2:1,两环用同样粗细,同种材料制成的导线连成闭合回路,连接两环的导线电阻不计,匀强磁场的磁感应强度变化率恒定,则在a、b环分别单独置于磁场中的两种情况下,M、N两点的电势差之比为 A. 4:1 B. 1:4 C. 2:1 D. 1:2
|
9. 难度:困难 | |
如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计,匀强磁场与导轨平面垂直,阻值为R的导体棒垂直于导轨静止放置.t=0时,将开关S由1掷到2.Q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象正确的是 A. B. C. D.
|
10. 难度:简单 | |
如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于( ) A. 棒的机械能增加量 B. 棒的动能增加量 C. 棒的重力势能增加量 D. 电阻R上放出的热量
|
11. 难度:简单 | |
如图所示是磁悬浮列车运行原理模型,两根平行绝缘直导轨间距为L,宽度相同的磁场磁感应强度,方向相反,并且以速度v同时沿直导轨向右匀速运动.导轨上金属框ab边长为L,ab边长与磁场宽度相同,电阻为R,运动时受到的阻力为Ff,则金属框运动的最大速度表达式为 A. B. C. D.
|
12. 难度:简单 | |
均匀导线制成的单匝正方形闭合线框abcd,边长为L,总电阻为R,总质量为m,将其置于磁感应强度为B的垂直于纸面向里的匀强磁场上方某处,如图所示,线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与磁场的水平边界面平行,当cd边刚进入磁场时,线框的加速度恰好为零,求线框下落的高度h。
|
13. 难度:中等 | |
如图(a)所示,面积S=0.2m2、匝数n=630匝,总电阻r=1.0Ω的线圈处在变化的磁场中,磁感应强度B随时间t按图(b)所示规律变化,方向垂直线圈平面,图(a)中的传感器可看成一个纯电阻R,并标有“3V、0.9W”,滑动变阻器R0上标有“10Ω、1A”,试回答下列问题: (1)设磁场垂直纸面向外为正方向,试判断通过理想电流表的电流方向. (2)若滑动变阻器触头置于最左端,为了保证电路的安全,图(b)中的t0最小值是多少?
|
14. 难度:中等 | |
如图所示,水平放置的平行轨道M、N间接有一阻值为R=0.128Ω的电阻,轨道宽为L=0.8m,轨道上搭一金属棒ab,其质量m=0.4kg,ab与轨道间动摩擦因数为0.5,除R外其余电阻不计,垂直于轨道的匀强磁场的磁感应强度为B=2T,ab在一电动机的牵引下由静止开始运动,经过t=2s,ab运动了1.2m,刚好达到最大速度.此过程中电动机的平均输出功率为8W,求:该过程中电阻R上消耗的电能.(g=10m/s2)
|
15. 难度:中等 | |
光滑平行的金属导轨MN和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直与导轨平面向上,MP间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg的金属杆ab垂直导轨放置,如图(a)所示.用恒力F沿导轨平面向上拉金属杆ab,由静止开始运动,v-t图象如图(b)所示.g=10m/s2,导轨足够长.求: (1)恒力F的大小; (2)金属杆速度为2.0m/s时的加速度大小; (3)根据v-t图象估算在前0.8s内电阻上产生的热量(已知在前0.8s内杆的位移为1.12m).
|
16. 难度:中等 | |
如图所示,匀强磁场的磁感应强度B为0.5T,其方向垂直于倾角θ为30°的斜面向上,绝缘斜面上固定有“”形状的光滑金属导轨MPN(电阻忽略不计),MP和NP长度均为2.5m,MN连线水平,长为3m,以MN的中点O为原点,OP为x轴建立一维坐标系Ox,一根粗细均匀的金属杆CD,长度d为3m,质量m为1kg,电阻R为0.3Ω,在拉力F的作用下,从MN处以恒定速度v=1m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好),g取10m/s2. (1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8m处电势差UCD; (2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式; (3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热.
|