1. 难度:简单 | |
如图所示,半径为2r的弹性螺旋线圈内有垂直纸面向外的圆形匀强磁场区域,磁场区域的半径为r,已知弹性螺旋线圈的电阻为R,线圈与磁场区域共圆心,则以下说法中正确的是( ) A.保持磁场不变,线圈的半径由2r变到3r的过程中,有顺时针的电流 B.保持磁场不变,线圈的半径由2r变到0.5r的过程中,有逆时针的电流 C.保持半径不变,使磁场随时间按B=kt变化,线圈中的电流为 D.保持半径不变,使磁场随时间按B=kt变化,线圈中的电流为
|
2. 难度:中等 | |
如图所示电路中,A、B为两个相同灯泡,L为自感系数较大、电阻可忽略不计的电感线圈,C为电容较大的电容器,下列说法中正确的有 A. 接通开关S,A立即变亮,最后A、B一样亮 B. 接通开关S,B逐渐变亮,最后A、B一样亮 C. 断开开关S,A、B都立刻熄灭 D. 断开开关S,A立刻熄灭,B逐渐熄灭
|
3. 难度:中等 | |
如图所示,正方形导线框abcd放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示,t=0时刻,磁感应强度的方向垂直纸面向里。下列选项中能表示线框的ab边受到的安培力F随时间t的变化关系的是(规定水平向左为力的正方向)( ) A. B. C. D.
|
4. 难度:中等 | |
如图,倾角为的光滑斜面上存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下,它们的宽度均为L.一个质量为m、边长也为L的正方形线框以速度进入上部磁场恰好做匀速运动,边在下部磁场运动过程中再次出现匀速运动.重力加速度为g,则 A.在进入上部磁场过程中的电流方向为 B.当边刚越过边界时,线框的加速度为 C.当边进入下部磁场再次做匀速运动时.速度为 D.从边进入磁场到边进入下部磁场再次做匀速运动的过程中,减少的动能等于线框中产生的焦耳热
|
5. 难度:中等 | |
如图所示,等腰直角三角形区域有垂直于纸面向里的匀强磁场,左边有一形状完全相同的等腰直角三角形导线框,线框从图示位置开始水平向右匀速穿过磁场区域,规定线框中感应电流沿逆时针方向为正方向,线框刚进入磁场区域时感应电流为i0直角边长为L,其感应电流i随位移x变化的图像正确的是( ) A. B. C. D.
|
6. 难度:中等 | |
如图所示,U形光滑金属导轨与水平面成37°角倾斜放置,现将一金属杆垂直放置在导轨上且与两导轨接触良好,在与金属杆垂直且沿着导轨向上的外力F的作用下,金属杆从静止开始做匀加速直线运动。整个装置处于垂直导轨平面向上的匀强磁场中,外力F的最小值为8N,经过2s金属杆运动到导轨最上端并离开导轨。已知U形金属导轨两轨道之间的距离为1m,导轨电阻可忽略不计,金属杆的质量为1kg、电阻为1Ω,磁感应强度大小为1T,重力加速度g=10m/s2,sin=0.6,cos=0.8。下列说法正确的是( ) A.拉力F是恒力 B.拉力F随时间t均匀增加 C.拉力F的最大值等于12N D.金属杆运动的加速度大小为2m/s2
|
7. 难度:中等 | |
如图,空间某区域内存在沿水平方向的匀强磁场,一正方形闭合金属线框自磁场上方某处释放后穿过磁场,整个过程线框平面始终竖直,线框边长小于磁场区域上下宽度.以线框刚进入磁场时为计时起点,下列描述线框所受安培力F随时间t变化关系的图中,可能正确的是 A. B. C. D.
|
8. 难度:中等 | |
法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是( ) A.若圆盘转动的角速度恒定,则电流大小恒定 B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动 C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化 D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍
|
9. 难度:简单 | |
矩形线圈abcd,长ab=20 cm,宽bc=10 cm,匝数n=200。线圈回路总电阻R=5 Ω,整个线圈平面内均有垂直于线圈平面的匀强磁场穿过,若匀强磁场的磁感应强度B随时间t的变化规律如图所示,则( ) A.线圈回路中感应电动势随时间均匀变化 B.线圈回路中产生的感应电流为0.2 A C.当t=0.3 s时,线圈的ab边所受的安培力大小为1.6 N D.在1 min内线圈回路产生的焦耳热为48 J
|
10. 难度:中等 | |
如图所示,竖直放置的光滑导轨GMANH,GM、HN平行,其中MAN为一半径为r=1m的半圆弧,最高点A处断开。GH之间接有电阻为R=4Ω的小灯泡L,在MN上方区域及CDEF区域内有垂直纸面向里的匀强磁场,磁感应强度大小均为B=1T,MN、CD之间的距离为h1=1.85m,CD、EF之间的距离为h2=1.15m,现有质量为m=0.7kg的金属棒ab,从最高点A处由静止下落,当金属棒下落时具有向下的加速度a=7m/s2,金属棒在CDEF区域内运动过程中小灯泡亮度始终不变,金属棒始终保持水平且与导轨接触良好,金属棒、导轨的电阻均不计,重力加速度g=10m/s2。求: (1)金属棒从A处下落时的速度v1大小; (2)金属棒下落到MN处时的速度v2大小; (3)金属棒从A处下落到EF过程中灯泡L产生的热量Q。
|
11. 难度:困难 | |
如图所示,空间存在竖直向下的匀强磁场,磁感应强度B=0.5T.在匀强磁场区域内,有一对光滑平行金属导轨,处于同一水平面内,导轨足够长,导轨间距L=1m,电阻可忽略不计.质量均为m=lkg,电阻均为R=2.5Ω的金属导体棒MN和PQ垂直放置于导轨上,且与导轨接触良好.先将PQ暂时锁定,金属棒MN在垂直于棒的拉力F作用下,由静止开始以加速度a=0.4m/s2向右做匀加速直线运动,5s后保持拉力F的功率不变,直到棒以最大速度vm做匀速直线运动. (1)求棒MN的最大速度vm; (2)当棒MN达到最大速度vm时,解除PQ锁定,同时撤去拉力F,两棒最终均匀速运动.求解除PQ棒锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热. (3)若PQ始终不解除锁定,当棒MN达到最大速度vm时,撤去拉力F,棒MN继续运动多远后停下来?(运算结果可用根式表示)
|
12. 难度:简单 | |
楞次定律是下列哪个定律在电磁感应现象中的具体体现? A. 电阻定律 B. 库仑定律 C. 欧姆定律 D. 能量守恒定律
|
13. 难度:中等 | |
空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示,一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上.t=0时磁感应强度的方向如图(a)所示:磁感应强度B随时间t的变化关系如图(b)所示,则在t=0到t=t1的时间间隔内 A.圆环所受安培力的方向始终不变 B.圆环中的感应电流始终沿顺时针方向 C.圆环中的感应电流大小为 D.圆环中的感应电动势大小为
|
14. 难度:简单 | |
如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是 A. B. C. D.
|
15. 难度:困难 | |
如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab、cd均与导轨垂直,在ab与cd之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ、MN先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ进入磁场开始计时,到MN离开磁场区域为止,流过PQ的电流随时间变化的图像可能正确的是 A. B. C. D.
|
16. 难度:困难 | |
如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是( ) A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向 D.开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动
|
17. 难度:中等 | |
如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中点,O为圆心.轨道的电阻忽略不计.OM是有一定电阻、可绕O转动的金属杆,M端位于PQS上,OM与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B.现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则等于( ) A. B. C. D.2
|
18. 难度:困难 | |
两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为、总电阻为的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd边于时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( ) A.磁感应强度的大小为 T B.导线框运动速度的大小为 C.磁感应强度的方向垂直于纸面向外 D.在至这段时间内,导线框所受的安培力大小为
|
19. 难度:中等 | |
扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌,为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示,无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是 A. B. C. D.
|
20. 难度:困难 | |
图甲和图乙是演示自感现象的两个电路图,L1和L2为电感线圈,A1、 A2、 A3是三个完全相同的灯泡.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是( ) A.图甲中,A1与L1的电阻值相同 B.图甲中,闭合S1,电路稳定后,A1中电流大于L1中电流 C.图乙中,变阻器R与L2的电阻值相同 D.图乙中,闭合S2瞬间,L2中电流与变阻器R中电流相等
|
21. 难度:困难 | |
如图所示,竖直放置的 A. 刚进入磁场Ⅰ时加速度方向竖直向下 B. 穿过磁场Ⅰ的时间大于在两磁场之间的运动时间 C. 穿过两磁场产生的总热量为4mgd D. 释放时距磁场Ⅰ上边界的高度h可能小于
|
22. 难度:困难 | |
如图所示,固定在水平面上间距为的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒和长度也为、电阻均为,两棒与导轨始终接触良好.两端通过开关与电阻为的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为.的质量为,金属导轨足够长,电阻忽略不计. (1)闭合,若使保持静止,需在其上加多大的水平恒力,并指出其方向; (2)断开,在上述恒力作用下,由静止开始到速度大小为的加速过程中流过的电荷量为,求该过程安培力做的功.
|
23. 难度:简单 | |
随着科技的不断发展,无线充电已经进入人们的视线。小到手表、手机,大到电脑、电动汽车的充电,都已经实现了从理论研发到实际应用的转化。下图给出了某品牌的无线充电手机利用电磁感应方式无线充电的原理图。关于无线充电,下列说法正确的是( ) A.无线充电时手机接收线圈部分的工作原理是“电流的磁效应” B.只有将充电底座接到直流电源上才能对手机进行充电 C.接收线圈中交变电流的频率与发射线圈中交变电流的频率相同 D.只要有无线充电底座,所有手机都可以进行无线充电
|
24. 难度:简单 | |
北半球地磁场的竖直分量向下.如图所示,在北京某中学实验室的水平桌面上,放置边长为L的正方形闭合导体线圈abcd,线圈的ab边沿南北方向,ad边沿东西方向.下列说法中正确的是( ) A. 若使线圈向东平动,则b点的电势比a点的电势低 B. 若使线圈向北平动,则a点的电势比b点的电势低 C. 若以ab为轴将线圈向上翻转,则线圈中感应电流方向为a→d→c→d→a D. 若以ab为轴将线圈向上翻转,则线圈中感应电流方向为a→b→c→d→a
|
25. 难度:中等 | |
如图甲所示,abcd为边长为L=1m的正方形金属线框,电阻为R=2Ω,虚线为正方形的对称轴,虚线上方线框内有按图乙变化的匀强磁场,虚线下方线框内有按图丙变化的匀强磁场,磁场方向垂直于纸面向里为正,则线框中的感应电流大小为 A. A B. A C. A D. A
|
26. 难度:中等 | |
如图甲所示,在竖直方向分布均匀的磁场中水平放置一个金属圆环,圆环所围面积为0.1m2,圆环电阻为0.2Ω。在第1s内圆环中的感应电流I从上往下看为顺时针方向。磁场的磁感应强度B随时间t的变化规律如图乙所示(其中在4~5s的时间段呈直线)。则( ) A.在0~5s时间段,感应电流先减小再增大 B.在0~2s时间段感应电流沿顺时针方向,在2~5s时间段感应电流也沿顺时针方向 C.在0~5s时间段,圆环最大发热功率为5.0×10-4W D.在0~2s时间段,通过圆环横截面的电荷量为5.0×10-1C
|
27. 难度:困难 | |
如图所示,有一边长为L的正方形线框abcd,由距匀强磁场上边界H处静止释放,其下边刚进入匀强磁场区域时恰好能做匀速直线运动。匀强磁场区域宽度也为L。ab边开始进入磁场时记为t1,cd边出磁场时记为t2,忽略空气阻力,从线框开始下落到cd边刚出磁场的过程中,线框的速度大小v、加速度大小a、ab两点的电压大小Uab、线框中产生的焦耳热Q随时间t的变化图象可能正确的是 A. B. C. D.
|
28. 难度:中等 | |
如图所示,电阻不计的导轨OPQS固定,其中PQS是半径为r的半园弧,Q为半圆弧的中点,O为圆心.OM是长为r的可绕O转动的金属杆,其电阻为R、M端与导轨接触良好.空间存在与平面垂直且向里的匀强磁场(图中未画出),磁感应强度的大小为B,现使OM从OQ位置起以角速度ω逆时针匀速转到OS位置.则该过程中 A.产生的感应电流大小恒定,方向为 OPQMO B.通过OM的电荷量为 C.回路中的感应电动势大小为Br2ω D.金属杆OM的发热功率为
|
29. 难度:简单 | |
如图所示,光滑水平面上有一质量为0.1kg的正方形金属线框abcd,边长为1m。线框处于垂直于水平面向下的有界匀强磁场中,ab边与磁场边界重合。现给ab边施加一个垂直ab边向右的大小为2N的水平恒力F,线框从静止开始运动,1s时线框速度为2m/s,此后撤去F,线框继续运动,恰好能完全离开磁场区域。已知从撤去外力F到线框停止过程中线框中通过的电荷量为0.2C,则( ) A.整个过程中感应电动势的最大值为2V B.整个过程中线框中通过的电荷量为1.8C C.整个过程中线框中产生的热量为1.6J D.线框电阻的总阻值为0.5Ω
|
30. 难度:困难 | |
如图甲所示,质量为0.01kg、长为0.2m的水平金属细杆CD的两头分别放置在两水银槽的水银中,水银槽所在空间存在磁感应强度大小B1=10T、方向水平向右的匀强磁场,且杆CD与该匀强磁场垂直.有一匝数为100、面积为0.01m2的线圈通过开关K与两水银槽相连.线圈处于与线圈平面垂直、沿竖直方向的匀强磁场中,其磁感应强度B2随时间t变化关系如图乙所示.在t=0.20s时闭合开关K,细杆瞬间弹起(可认为安培力远大于重力),弹起的最大高度为0.2m.不计空气阻力和水银的黏滞作用,不考虑细杆落回水槽后的运动,重力加速度g=10m/s2,下列说法正确的是 A.磁感应强度B2的方向竖直向上 B.t=0.05s时,线圈中的感应电动势大小为10V C.细杆弹起过程中,细杆所受安培力的冲量大小为0.01N·s D.开关K闭合后,通过CD的电荷量为0.01C
|
31. 难度:中等 | |
在倾角为θ足够长的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L,如图所示.一个质量为m、电阻为R、边长也为L的正方形线框,在t=0时刻以速度v0进入磁场,恰好做匀速直线运动,若经过时间t0,线框ab边到达gg′与ff′中间位置时,线框又恰好做匀速运动,则下列说法正确的是( ) A.当ab边刚越过ff′时,线框加速度的大小为gsin θ B.t0时刻线框匀速运动的速度为 C.t0时间内线框中产生的焦耳热为mgLsin θ+ D.离开磁场的过程中线框将做匀速直线运动
|
32. 难度:困难 | |
如图所示,间距的平行导轨MNS、PQT处于磁感应强度大小均为的两个匀强磁场中,水平导轨处的磁场方向竖直向上,光滑倾斜导轨处的磁场方向垂直于导轨平面斜向下。长度均为L、质量均为、电阻均为的导体排ab、cd分别垂直放置于水平和倾斜导轨上,并与导轨接触良好,导轨电阻不计,导体棒ab通过两根跨过光滑定滑轮的绝缘细线分别与质量的物体C和导体棒cd相连,细线沿导轨中心线且在导轨平面内,细线及滑轮的质量不计,已知倾斜导轨与水平面的夹角,水平导轨与导体棒ab间的动摩擦因数,重力加速度g取,,两导轨足够长,导体棒cd运动中始终不离开倾斜导轨。将物体C由静止释放,当它达到最大速度时下落的高度,在这一运动过程中,求: 物体C的最大速度; 导体棒ab产生的焦耳热。
|
33. 难度:中等 | |
如图所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B;边长为L的正方形金属框abcd(简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U型金属框架MNPQ(仅有MN、NQ、QP三条边,简称U型框),U型框的M、P端的两个触点与方框接触良好且无摩擦,其它地方没有接触。两个金属框每条边的质量均为m,每条边的电阻均为r。 (1)若方框固定不动,U型框以速度v0垂直NQ边向右匀速运动,当U型框的接触点M、P端滑至方框的最右侧时,如图乙所示,求:U型框上N、Q两端的电势差UNQ; (2)若方框不固定,给U型框垂直NQ边向右的水平初速度v0,U型框恰好不能与方框分离求:方框最后的速度v1和此过程流过U型框上NQ边的电量q; (3)若方框不固定,给U型框垂直NQ边向右的初速度v(v>v0),在U型框与方框分离后,经过t时间,方框的最右侧和U型框的最左侧之间的距离为s。求:分离时U型框的速度大小v1和方框的速度大小v2。
|
34. 难度:困难 | |
如图甲为电动汽车无线充电原理图,M为受电线圈,N为送电线圈。图乙为受电线圈M的示意图,线圈匝数为n,电阻为r,横截面积为S,两端a、b连接车载变流装置,匀强磁场平行于线圈轴线向上穿过线圈。下列说法正确是 A. 只要受电线圈两端有电压,送电线圈中的电流一定不是恒定电流 B. 只要送电线圈N中有电流流入,受电线圈M两端一定可以获得电压 C. 当线圈M中磁感应强度大小均匀增加时.则M中有电流从a端流出 D. 若△t时间内,线圈M中磁感应强度大小均匀增加△B,则M两端的电压
|
35. 难度:中等 | |
如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块K和质量为m的缓冲车厢。在缓冲车厢的底板上,平行车的轴线固定着两个光滑水平绝缘导轨PQ、MN。缓冲车的底部还装有电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B。导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L。假设缓冲车以速度与障碍物C碰撞后,滑块K立即停下,此后线圈与轨道间的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计。求: (1)缓冲车缓冲过程最大加速度的大小; (2)若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电量q和产生的焦耳热Q; (3)若缓冲车以某一速度(未知)与障碍物C碰撞后,滑块K立即停下,缓冲车厢所受的最大水平磁场力为。缓冲车在滑块K停下后,其速度v随位移x的变化规律满足:。要使导轨右端不碰到障碍物,则缓冲车与障碍物C碰撞前,导轨右端QN与滑块K的cd边的距离至少多大。
|