1. 难度:中等 | |
关于分子动理论,下列说法正确的是( ) A.分子直径的数量级约为10-15m B.压缩气体时,要用力是由于气体分子间存在斥力的缘故 C.已知某种气体的密度为ρ,摩尔质量为M,阿伏加德罗常数为NA,则单位体积的分子数为 D.水结为冰时,部分水分子已经停止了热运动
|
2. 难度:简单 | |
以下是四种导电器件的伏安特性曲线,随电压增加,电阻变小的是( ) A. B. C. D.
|
3. 难度:困难 | |
如图,长为的直导线拆成边长相等,夹角为的形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为,当在该导线中通以电流强度为的电流时,该形通电导线受到的安培力大小为
A.0 B.0.5 C. D.
|
4. 难度:困难 | |
如图所示是一个由电池E、电阻R与平行板电容器组成的串联电路,平行板电容器中央有一个液滴处于平衡状态,当增大电容器两板间距离的过程中( ) A.电容器的电容变大 B.电阻R中有从a流向b的电流 C.液滴带正电 D.液滴仍然平衡
|
5. 难度:困难 | |
远距离输电原理图如图所示,升压变压器和降压变压器均为理想变压器,当k由2改接为1时,下列说法不正确的是( ) A.电压表读数增大 B.电流表读数减小 C.灯泡的实际功率在减小 D.输电线上损失的功率减小
|
6. 难度:中等 | |
如图所示,一个闭合矩形线圈abcd以速度v从无磁场区域匀速穿过匀强磁场区域.以abcd方向为电流的正方向,图中能正确反映线圈中电流-时间关系的图象是( ) A. B. C. D.
|
7. 难度:简单 | |
如图所示,光滑平行金属导轨PP′和QQ′都处于同一水平面内,P和Q之间连接一电阻R,整个装置处于竖直向下的匀强磁场中,现在垂直于导轨放置一根导体棒MN,用一水平向右的力F拉动导体棒MN,以下关于导体棒MN中感应电流方向和它所受安培力的方向的说法正确的是( )
A.感应电流方向是M→N B.感应电流方向是N→M C.安培力水平向左 D.安培力水平向右
|
8. 难度:中等 | |
一矩形金属线圈共10匝,在匀强磁场中绕垂直磁场方向的转轴匀速转动,产生交变电流的电动势为e=220sin(100πt)V,对于这个交变电流的说法正确的是( ) A.此交变电流的频率为50Hz B.此交变电流电动势的有效值为220V C.t=0时,线圈平面与中性面重合,此时磁通量最大 D.耐压为230 V的电容器能够在该交变电路中使用
|
9. 难度:简单 | |
如图所示,线圈的自感系数很大,且其直流电阻可以忽略不计,、是两个完全相同的小灯泡,开关闭合和断开的过程中,灯、的亮度变化情况是(灯丝不会断) A.闭合,、不同时亮 B.闭合,、同时亮 C.断开,、立即熄灭 D.断开,立即熄灭,亮一下才熄灭
|
10. 难度:中等 | |
如图所示的电路中,电源电动势为E,内电阻为r,L为小灯泡(其灯丝电阻可以视为不变),R1和R2为定值电阻,R1=R2=r,R3为光敏电阻,其阻值的大小随照射光强度的增强而减小.闭合开关S后,将照射光强度减弱,则 ( ) A.电路的路端电压将减小 B.灯泡L将变暗 C.R1两端的电压将增大 D.电源的输出功率减小
|
11. 难度:简单 | |
带电量相同,质量不同的粒子从容器A下方的小孔S1飘入电势差为U的加速电场,其初速度几乎为零。然后经过S3沿着磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打在照相底片D上,如图所示。运动过程中粒子之间的相互作用忽略不计,下列说法正确的是( ) A. 这些粒子经过S3时的动能相同 B. 这些粒子经过S3时的速率相同 C. 这些粒子在磁场中运动的轨迹圆半径与质量成正比 D. 这些粒子在磁场中运动的时间与质量成正比
|
12. 难度:困难 | |
某同学欲测量一电容器的电容,他采用高电阻放电法来测量,电路图如图甲所示.其原理是测出电容器在充电电压为U时所带的电荷量Q,从而求出其电容C.该实验的操作步骤如下: (1)先判断电容器的好坏,使用万用表的电阻挡进行测量,观察到万用表指针向右偏转较大角度,又逐渐返回到起始位置,此现象说明电容器是____(选填“好”、“坏”)的; (2)按如图甲所示电路原理图连接好实验电路,将开关S接通____(选填“1”、“2”),对电容器进行充电,调节可变电阻R的阻值,再将开关S接通另一端,让电容器放电,观察微安表的读数,直到微安表的初始指针接近满刻度; (3)此时让电容器先充电,记下这时的电压表读数U0=2.9V,再放电,并同时开始计时,每隔5 s或10 s读一次微安表的读数i,将读数记录在预先设计的表格中。根据表格中的12组数据,以t为横坐标,i为纵坐标,在乙图所示的坐标纸上描点(图中用“×”表示),请在图上作出电流i与时间t的曲线______; (4)根据以上实验结果和图象,算出该电容器的电容约为____F(结果保留两位有效数字).
|
13. 难度:中等 | |
导电玻璃是制造LCD的主要材料之一,为测量导电玻璃的电阻率,某小组同学选取长度L=20.00 cm、截面积为6.0×10-7m2的圆柱体导电玻璃进行实验,用欧姆表粗测该导电玻璃的电阻Rx,发现其电阻约为13.0 Ω. (1)为精确测量Rx的阻值,该小组设计了如图甲所示的实验电路,可供使用的主要器材如下: 电源E(电动势为4.5 V,内阻约1 Ω); 电阻箱R0(阻值0~999.9 Ω); 电流表A1(量程0~200 mA,内阻约1.5 Ω); 电流表A2(量程0~3 A,内阻约0.5 Ω); 滑动变阻器R1(阻值范围0~1 kΩ); 滑动变阻器R2(阻值范围0~20 Ω). ①电流表应选用____,滑动变阻器应选用____.(填器材代号) ②该小组进行了如下操作: A.将滑动变阻器的滑片移到最右端,将S1拨到位置1,闭合S2,调节滑动变电阻R,调到合适位置时读出电流表的示数I; B.将S1拨到位置2,调节电阻箱的阻值,当电流表的读数为____时,不再改变,此时电阻箱的数值如图乙所示,可求得导电玻璃的电阻为Rx=____Ω. (2)由以上实验可求得该导电玻璃的电阻率ρ=___Ω·m.
|
14. 难度:中等 | |
如图所示的电路中,电阻R1=9Ω,R2=15Ω,R3=30Ω,电源内电阻r=1Ω,闭合开关S,理想电流表的示数I2=0.4A.求: (1)电阻R3两端的电压U3; (2)流过电阻R1的电流I1的大小; (3)电源的总功率P.
|
15. 难度:中等 | |
如图所示,MN是磁感强度为B的磁场边界,一带电量为q=2.0×10-9C,质量为m=1.8×10-16kg的粒子,在MN上O点沿与MN成30°角方向进入磁场,经历t=1.5×10-6s后到达MN上另一点P.重力不计,取π=3,求: (1)此粒子是带正电还是负电; (2)粒子从进入磁场到穿出磁场时速度的偏向角Δφ; (3)磁感强度B.
|
16. 难度:中等 | |
轻质细线吊着一边长为L=0.8 m、匝数n=10的正方形线圈,总电阻为r=1 Ω.边长为的正方形磁场区域对称分布在线圈下边的两侧,如图甲所示,磁场方向垂直纸面向里,大小随时间变化关系为:B=1+0.5t(如图乙所示),2s时细线开始松弛,取g=10 m/s2.求: (1)刚开始时线圈产生的电动势E大小及电流方向; (2)2s内通过线圈的电荷量q; (3)线圈质量m.
|
17. 难度:困难 | |
如图所示,平行板之间存在着相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B1=0.20 T,方向垂直纸面向里,电场强度E1=1.0×105 V/m,PQ为板间中线.紧靠平行板右侧边缘的xOy坐标系的第一象限内有一边界线OA,与y轴正方向间的夹角为45°,边界线的上方有垂直纸面向外的匀强磁场,磁感应强度B2=0.25 T,边界线的下方有水平向右的匀强电场E2.一束电荷量q=8.0×10-19 C、质量m=8.0×10-26 kg的带正电粒子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.4m)的Q点垂直y轴射入磁场区,最后打到x轴上的C点.已知C的横坐标为xC=0.6 m,求: (1)粒子在平行板间运动的速度v大小; (2)粒子进入电场时速度的方向和电场强度E2的大小; (3)现只改变AOy区域内磁场的磁感应强度的大小,使粒子都不能打到x轴上,磁感应强度的大小B2′应满足什么条件?
|